
Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

ON CHOOSING BEST SAMPLES FOR VIRTUAL DRUMS

André Nusser

DrumGizmo
Saarbrücken, Germany

andre.nusser@gmail.com

Bent Bisballe Nyeng

DrumGizmo
Aarhus, Denmark

deva@aasimon.org

ABSTRACT
Sampling drum kits well is a difficult and challenging task. Espe-
cially, building a drum kit sample bank with different velocity layers
requires producing samples of very similar loudness, as changing the
gain of a sample after recording makes it sound less natural. An ap-
proach that avoids this issue is to not categorize the samples in fixed
groups but to simply calculate their loudness and then dynamically
choose a sample, when a sample corresponding to, e.g., a specific
MIDI velocity is requested. We present a first investigation of al-
gorithms performing this selection. We implemented the seemingly
best candidate in DrumGizmo – a free software drum plugin – and
we do experiments on how our suggested algorithm performs on the
sampled drum kits.

1. INTRODUCTION

When creating virtual instruments that correspond to a certain ana-
log instrument, we naturally always aim at making them sound as
realistic as possible. There are at least two ways to achieve this.
First, we can use physical simulations like the famous Pianoteq vir-
tual instrument [1] does or, second, we can use real samples from
the instrument as, e.g., most drum plugins do. In this article we fo-
cus on the second approach. When using this approach, a question
that naturally comes to mind is how to use the sample data to get the
most realistic sound. There are two orthogonal directions to tackle
this problem. First, when getting the input of a programmed drum
(e.g., as MIDI), we want to humanize it such that the MIDI velocities
are according to how a real drummer would play this piece. Second,
after applying such a humanization, we get to a lower-level problem
which is that of choosing the right sample from our limited data set.
Again, we focus on the second point in this article.

The arguable standard for choosing samples is the famous Round
Robin algorithm. This algorithm groups samples of similar loudness
together and then selects them in a circular manner (first sample,
second sample, . . . , last sample, first sample, . . .). While this is the
standard, it has significant drawbacks. First, it requires a somewhat
arbitrary grouping of velocities. This in turn might lead to so called
“staircase effects” when playing sweeps from quiet to loud notes.
This is often resolved by scaling the loudness of the sample to the
corresponding MIDI velocity. However, this decouples the sample
loudness from the actual strength of the hit, again potentially leading
to a less natural sound as this leads to inconsistencies between the
different played samples.

In this work, we introduce a new sample selection algorithm that
is not based on grouping of the samples, but instead works purely on
the given loudness of the samples. Additionally, it does not adjust
the gain of single samples. The goal of this algorithm is to choose
the best possible sample, according to the requested MIDI velocity
after humanization. This means, we want to choose a sample which
is as close as possible. However, if we always just choose the closest

sample we run into two issues. First, this creates artifacts (as shown
later in this article), and second, it leads to a robotic sound when we
play the same sample(s) over and over. Thus, we additionally have
to make sure to choose a reasonably diverse set of samples from
our sample data set. Finally, to avoid further artifacts in the form
of patterns, we additionally want randomization to help us breaking
these patterns.

1.1. Our Contribution

To the best of our knowledge, this is the first academic article that
deals with the issue of selecting best samples from a set of samples
with “continuous power values”. To this end, we first identify im-
portant aspects that sampling algorithms in this setting have to ful-
fill. After we formulate these requirements and formalize them to
some degree, we present our resulting algorithm, which is based on
the computation of a multi-criteria objective function. Consequently,
we give an overview over an implementation of this approach and
then conduct experiments to evaluate the actual quality. As reference
implementation, we use the old sample selection method of Drum-
Gizmo [2] – an open source drum machine.

1.2. Related Work

Regarding related work, we consider the previous sample selection
methods used by DrumGizmo. DrumGizmo is an open source, cross-
platform, drum sample engine and audio plugin aiming to give an
output that is as close to a real drummer as possible.

In DrumGizmo, the engine gets a value l ∈ [0, 1] which must
then be used for deciding how the output should be produced. Some
engines use this value as a gain factor but in the case of DrumGizmo
it is used for sample selection only. The early versions used a sam-
ple selection algorithm based on velocity groups, akin to the one
used by the sfz format [3], in which each group spans a specified ve-
locity range and the sample selection is made by selecting one of the
samples contained in the group corresponding to the input velocity
uniformly at random. See Figure 1 for the flow diagram.

This algorithm did not give good results on small sample sets,
so later an improved algorithm was introduced which was instead
based on normal distributed random numbers and with power values
for each sample in the set. A prerequisite for this new algorithm is
that the power of each sample is stored along with the sample data
of each sample. The power values of a drum kit are floating point
numbers without any restrictions but assumed to be positive. Then
the input value l is mapped using the canonical bijection between
[0, 1] and [pmin, pmax]. We call this new value p.

Now we describe the aforementioned improved sample selection
algorithm. We select a value p′ drawn from the normal distribution
N (µ = p′, σ2), where the mean value µ is set to the input value l
and the standard deviation σ is a parameter controlled by the user

https://drumgizmo.org
mailto:andre.nusser@gmail.com
https://drumgizmo.org
mailto:deva@aasimon.org

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

input note [0, 1] group selector
group

uniform sampling sample

Figure 1: Flow diagram of the first sampling algorithm of Drum-
Gizmo.

input note [0, 1] Gaussian sampling
power

select nearest sample sample

mean

stddev

if sample is equal to last one and
number of tries not exceeded

Figure 2: Flow diagram of the second sampling algorithm of Drum-
Gizmo.

expressed in fractions of the size and span of the sample set. Now
we simply find the sample s with the power q which is closest to p′.
In case s is equal to the last sample that we played, we repeat this
process, otherwise we return s. If we did not find another sample
than the last played after 4 iterations, we just return the last played
sample, see Figure 2 for the flow diagram.

2. PRELIMINARIES

Drum samples are cut from recordings of drums with multiple micro-
phones. Each hit on a drum must be distinguishable from the others
and can therefore not overlap in time. Due to the multiple micro-
phones used for the recording, each sample spans multiple channels.
Additionally, due to the speed of sound in air and the distance of each
drum from each of the microphones used, the initial sample position
in each of the channels will not be at the same place – the channel
which is the closest to the sound source of a particular instrument is
the main channel of that instrument, see Figure 3.

A sample has a stroke power that is the physical power used
by the drummer when making that particular hit. Since this is not
something that can be easily measured, each sample power is instead
calculated as the power of the signal in an initial attack period of the

sample offset sample end

Main channel:

Secondary channel 1:

Secondary channel 2:

Figure 3: Sketch of the original signals of a sample recorded with
multiple microphones.

audio of the main channel:

power(s, n) =

n∑
i=0

s[i]2,

where n is defined on a per instrument basis and will vary from in-
strument to instrument, and s[i] is the ith audio sample of the main
channel.

Since the powers are simply sums of squares, they can be used
for comparing one sample to another and ultimately for mapping a
MIDI velocity to a matching sample.

2.1. Setting

We now describe the setting in which we want to choose the samples.
We are given:

• a drum kit consisting of a set of instruments I

• for each instrument i ∈ I , we are given an input sample set
Si

• each sample s ∈ Si is already labeled with a power value
ps ∈ R+

After reading the drum kit, requests of the form (i, p) ∈ I × R+

arrive. We want to answer these requests by choosing the best sample
from Si for the power value p.

2.2. Notation and Terminology

We use the following notation throughout this article. An instrument
is considered to be one of the drums of the drum kit that we sam-
pled. A sample (denoted by s, s′, . . .) is the recording of one hit on
a specific instrument. Given a sample s, its power ps is the perceived
loudness and can be expressed by any common loudness measure of
an audio clip. If a power value is requested and does not correspond
to a sample, we denote it by p, p′, With the term velocity, we
refer to the attack velocity of a MIDI note and it is thus between 0
and 127. We consider time in a discretized way and thus a time point
is an integer value intuitively referring to the number of time steps
passed since the beginning of time. For a sample s, we use ts to refer
to the time point at which the sample was played last.

3. REQUIREMENTS

We now discuss which requirements a good sampling algorithm in-
tuitively has to fulfill. Such an algorithm has a trade off between two
main objectives: choosing a sample which is close to the requested
power value, while not choosing the same sample too close to the
previous time it was used. Note that if we just want to be as close
as possible to the requested power value, then we would always just
choose the closest sample. However, if we now play a sequence of
the same instrument at the same power level, then we always play
the same sample and thereby obtain a robotic sound. Thus, we want
to find other samples that are not too far.

More concretely, we aim to fulfill the following requirements
with our proposed algorithm.

Close sample: The chosen sample should be reasonably close to the
requested power value, such that the listener perceives it as
being played at the same velocity.

Avoid same samples: When we have multiple samples to choose
from, we should always take one that was last played far
enough in the past to avoid a robotic sound.

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Randomization: Furthermore, to avoid patterns (like e.g. in Round
Robin, where exactly every nth hit sounds the same when we
have n samples in our velocity group), we want some ran-
domization.

Locality: If two samples have a similar power value, they should
also be treated similarly by the algorithm. In other words,
locally, samples should have almost the same probability of
being chosen.

We now formalize the requirements stated above. Let p, p′ be
two power levels. We define their dissimilarity to simply be their
distance |p− p′|. Thus, if p is the input power value and p′ is the
power value of the chosen sample, we want to minimize the above
term. Let s be a sample and ts the time point it was played last.
When we are now queried for a sample at time t, then for s to be
a good sample, we want t − ts to be reasonably high. Again, we
just use the distance between the current time step and the last time
step a sample was used. Randomization is difficult to formalize in
a simple way in this context, thus, we just require that for the same
history, different outcomes of choosing a sample should be possible.
The last requirement we also state in a rather intuitive than formal
way. Assume we are requested a sample for the power value p and
the two samples s, s′ have a very similar power value. Then, if we
exchange ts and ts′ , the probability of choosing s over s′ should be
roughly the same as if we do not exchange them.

4. ALGORITHM

In this section we discuss the new algorithm that we suggest for
sample selection. The requirements mentioned in Section 3 con-
sist of several different objectives. Thus, we are dealing with a
multi-objective optimization, where we have to somehow combine
the different objectives into one. As we are dealing with an inter-
active setting where the quality of the solution of the optimization
is determined by the user, it seems natural to make the algorithm
parametrized and expose the parameters to the user. Using these
parameters, the user can influence how the different objectives are
weighted and thereby influence the final result, just having a very
rough intuitive and non-technical understanding of the process.

Following from the above description, we choose a single ob-
jective function that we optimize. This objective function consists
of the terms that were roughly outlined in Section 3 as well as the
parameters that are factors in front of the requirements terms. We
formulate our objective function such that smaller values are better
and thus we end up with a minimization problem. Consequently, we
just have to evaluate a single term on each sample and then pick the
sample which has the smallest value.

We now give the objective function. Let p be the power that is
requested. As before, for any sample s, let ts be the time at which
s was played last (the unit does not matter as it is parametrized by
β anyway), and let r(s, t) be a random number generator producing
numbers in the range [0, 1] uniformly and independently at random.
Let α, β, γ > 0 be the parameters that are later exposed to the user
of the sample algorithm. Also, recall that pmin, pmax is the minimal
and maximal power value, respectively, and that S is the sample rate,
i.e., the number of time steps per second. At the current time t, we
now want to find the sample s minimizing the objective function

f(s, t) := α ·
(

p− ps
pmax − pmin

)2

+β ·
(
1 +

t− ts
S

)−1

+γ ·r(s, t).

Note that we have to ensure pmax 6= pmin to avoid division by zero.

Let us now consider the objective function in more detail. The
objective function consists of three summands and we will have a
closer look at them in order.

The first summand, namely

α ·
(

p− ps
pmax − pmin

)2

,

is for expressing the distance of the sample’s power value ps to the
desired power value p. Instead of using the absolute value |p− ps| as
discussed in Section 3, we first normalize the value to be in the range
[0, 1] and then square it. By squaring, we put a significantly stronger
penalty than the absolute value on samples whose power value is
very far from the requested power value. Note that if we request a
power value that lies in the middle of the power values of our sample
set, then this term will maximally be around 1

4
α. However, if p =

pmax or p = pmin, then we might obtain a value of α. While this
might seem unreasonable at first glance, we want to highlight that
this indeed matches the desired behavior, because the penalty should
be only dependent on the distance to the sample and not the possible
worst case value it can attain. In other words, a bad choice should
not be made to look better, if there are much worse choices possible.

The second summand, namely

β ·
(
1 +

t− ts
S

)−1

,

expresses how much time passed since we last played the sample for
which we are currently evaluating the objective function. However,
we want large values if little time passes and therefore we raise the
whole term to the power of −1. To avoid extreme values, we add 1
to the normalized distance of the current time and the last time the
sample was played. Note that if we would not have a “+1”, then for
t − ts being very small, the values of this term would be huge and
thus dominate the whole objective function. We normalize by the
sample rate, as we want the time distance to be in seconds and not in
samples.

The third summand, namely

γ · r(s, t),

just adds some noise to the process to make it non-deterministic and
thus avoid patterns in the selection as mentioned in Section 3.

We already explained the core part of the sample selection algo-
rithm. The remainder is now straight-forward. We simply evaluate
the objective function for each sample and then pick the one with
the smallest value. For completeness, Algorithm 1 shows the pseudo
code for the sample selection algorithm.

Note that the worst-case complexity of evaluating the objective
function is linear in the number of samples for the instrument that
we are considering. However, in practice we can avoid evaluation
for most samples by simply starting with the “most promising” sam-
ple and recursively evaluating the neighbors (with respect to power
value) until the future possible evaluations cannot beat the currently
best value.

5. EMULATING OTHER SAMPLE SELECTION
ALGORITHMS

One of the main advantages of the described sampling algorithm
is that it can emulate the most common sample choice algorithms.
Sometimes this can be done by just adjusting the parameters α, β, γ,

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Algorithm 1 This is the pseudo code of the sampling function.
Input: Requested power p, instrument i, current time step t, param-

eters α, β, γ, and array last with the time points a sample has been
played last

Output: Sample s
s← undefined
fmin ←∞
for s′ ∈ Si do

v ← α ·
(

p−ps′
pmax−pmin

)2
+β ·

(
1 + t−last[s′]

S

)−1

+γ · r(s′, t)
if v < fmin then

fmin ← v
s← s′

end if
end for
last [s]← t
return s

and sometimes we have to prepare the power values of the drum kit
accordingly. In the following, we describe which algorithms can be
emulated and how we have to set the parameters and power values
for that.

First, note that all extreme choices of the parameters – meaning
that we set one parameter of α, β, γ to a positive value and all others
to zero – emulate different selection algorithms.

Choose Closest. If we set α > 0 and β = γ = 0, then
the objective function reduces to the first summand and thus we just
always choose the sample s that minimizes |p− ps|, i.e., the closest
sample.

Choose Oldest. Similarly, if β > 0 but α = γ = 0, then
the objective function reduces to the second summand and thus is
minimized by the sample s that maximizes t − ts, i.e., the sample
that was last played the furthest back in time.

Random Selection. If now γ > 0 and α = β = 0, then the
objective function reduces to the third summand and we thus always
select a sample uniformly at random.

Round Robin. The previously mentioned emulations were
straight forward, however, the arguably most commonly used sam-
ple selection algorithm in practice is Round Robin. As already dis-
cussed in Section 1, Round Robin assumes the samples to already be
grouped. In our case this means that samples s1, . . . , sk that belong
to the same group should all be assigned the same power value, i.e.,
ps1 = · · · = psk . Now, if there is a query with power value p, we
want to always choose the closest group of samples, thus α should
be large compared to β and γ, e.g., α = 1. After restricting to the
samples of a specific group, we now always want to play the oldest
sample, thus we simply want a small value β > 0, say β = 1/1000.
If we additionally want to randomize Round Robin in a way that we
sometimes choose the second or third oldest sample, then we want
to set γ to a small value smaller than but in a similar range as β, say
γ = 1/4000.

6. IMPLEMENTATION

We added our new sampling algorithm to DrumGizmo, replacing the
one it previously used.1 The sampling algorithm itself did not re-

1The source-code is available through git at git://git.drumgizmo.
org/drumgizmo.git, and the source code can be browsed online at
http://cgit.drumgizmo.org/drumgizmo.git/.

quire any particular implementation efforts. Most of the time was
spent on the theoretical part of it. To give a better overview over the
technicalities, we briefly list the information that needs to be stored.
In a preprocessing phase, we compute pmin and pmax for each instru-
ment and set all values of the last arrays to 0. The power values of
the samples are given by the drum kit in DrumGizmo. The parame-
ters α, β, γ have default values that were determined experimentally.
Each of them can be changed by the user, either interactively in the
GUI or via the command line interface.

As DrumGizmo is free software, the exact details of the imple-
mentation can be checked by everyone.

For instruments with reasonably small sample sets, simply iter-
ating over all samples for the specific instrument as shown in Algo-
rithm 1 is sufficiently performant. However, imagine an instrument
with an extremely large sample set. As DrumGizmo drum kits can
be created by everyone, there is no restriction and we cannot as-
sume a small sample size. To avoid performance issues arising from
such a scenario, we employ a non-naive search by starting with the
“most promising” sample and then inspecting its neighbors until the
currently best sample is known to dominate the remaining samples.
More concretely, we do the following: we start with the sample s
that has the closest power value ps to the requested power value p,
i.e., we find the sample s that minimizes |p− ps|. The key observa-
tion why a local search often suffices is that we can lower bound the
second and third summand of the objective function by 0. Thus, for
a given sample s and a time point t, we have

f(s, t) ≥ α ·
(

p− ps
pmax − pmin

)2

. (1)

Assume now that, for some x > 0, we evaluated all samples s with
p − x ≤ ps ≤ p + x. Then we know, by Equation 1, that for all
samples s′ with power values outside the range [p−x, p+x] it holds
that

f(s′, t) > α ·
(

x

pmax − pmin

)2

.

Note that by traversing the samples in order of their distance to p
(which is possible by having the samples stored in an array sorted
increasingly by power value), we can stop the search as soon we
searched the range [p− x, p+ x] for which

fmin < α ·
(

x

pmax − pmin

)2

.

7. EXPERIMENTS

To conduct the experiments, we use the implementation of the new
sampling algorithm in DrumGizmo. As a base-line for comparison,
we use the previous sample selection algorithm of DrumGizmo. We
want to evaluate how the sample selection algorithm performs in
practice, therefore we use a drum kit of DrumGizmo. As normally
the snare drum is the instrument with the highest number of sam-
ples, we choose this drum for our experiments. More precisely, we
use the Crocell kit, which has 98 snare samples. In particular, we use
the power value distribution of the samples of this kit. See Figure 4
for a visualization of the power level distribution. In this plot, we can
see that the sampling is heavy on the more quiet samples and signif-
icantly sparser on the louder samples. We ask the reader to keep this
distribution in mind for the remainder, when considering the experi-
mental results. Due to this distribution, we expect that when playing

git://git.drumgizmo.org/drumgizmo.git
git://git.drumgizmo.org/drumgizmo.git
http://cgit.drumgizmo.org/drumgizmo.git/

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Power Level

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f S
am

pl
es

Figure 4: The power value distribution of the Crocell kit.

notes all over the power spectrum, the number of times each individ-
ual sample is played will be higher for louder samples as there are
significantly less to choose from.

We want to test the following hypotheses with our experiments:
1. Two samples with similar power values are chosen similarly

often.
2. Playing the same MIDI note over and over again plays a rea-

sonably varied set of samples.
To test the above hypotheses, we conduct the following experiments:

1. Playing fast sweeps from MIDI velocity 0 to MIDI velocity
127, 8 times

2. Playing a single velocity fast for 1015 times
To be able to compare the results of these experiments, we have

to somehow visualize the selections. We choose to plot histograms.
More concretely, for a run of the experiment, we plot the number
of times a sample was selected over its index in the array of or-
dered samples. For the first experiment, i.e., the sweeps, you can
see the histograms in Figure 5. The plot of the old sampling algo-
rithm clearly is less homogeneous and has larger variance than the
plot of the new sampling algorithm. Especially, the old sampling al-
gorithm uses several samples a lot while barely using others, which
can lead to a more robotic sound. Especially, it seems a waste of
storage and sampling effort to not use the full potential of the data.

The second experiment we conducted for two different MIDI ve-
locities: MIDI velocity 80 (Figure 6) and MIDI velocity 112 (Figure
7). Let us first discuss Figure 6. The most significant shortcoming of
the old algorithm is that the histogram does not roughly resemble a
bell curve. Instead, we have some samples that are barely used which
are very close to samples which are used predominantly. Especially,
the property that samples with similar power values are used simi-
larly often is violated. The new algorithm clearly improves on these
shortcomings and gives us the desired result. In Figure 7, we can see
a situation where there are just a few samples available. Here, the
old algorithm and the new algorithm perform similarly, except that
the new algorithm again distributes the usage of the samples more
evenly. However, more importantly, even though the new algorithm
does not specifically restrict to a specific power value range, it still
does not choose samples that are far away from the desired power
value.

To also get an idea of the performance of the new sampling algo-
rithm, we want to see how many power values of samples are eval-
uated per query. Without the search optimization described at the

Table 1: Number of evaluations per query. The experiments with the
numbers (16, 48, 80, 112) are the experiments from above of repeat-
edly playing a MIDI note. The number gives the MIDI velocity of
this MIDI note.

experiment sweep 16 48 80 112
mean evaluations 6.81 13.99 12.93 10.88 4.00
stddev evaluations 2.47 0.19 1.53 0.50 0.00

end of Section 6, this number would always be the number of sam-
ples. However, we expect that the search optimization significantly
reduces the number of evaluations. To test this hypothesis, we take
the above experiment and look at the number of evaluations. Recall
that the Crocell kit contains 98 snare samples and thus naively eval-
uating the objective function would lead to 98 evaluations. You can
see the outcome of the experiment in Table 1. The mean number of
evaluations is significantly less (at most 14!) than the worst-case 98
evaluations per sample selection and also the variance is very low,
meaning that even for large sample sets, this sample selection algo-
rithm should work well in real-time scenarios.

In summary, the experiments show that the new sampling al-
gorithm is clearly superior to the old method that was employed in
DrumGizmo and fulfills all the requirements formulated in Section
3.

8. CONCLUSION AND FUTURE WORK

This article presented a new algorithm for choosing samples in a set-
ting where the samples are annotated with power values, with the
desired behavior of choosing samples close to the input power value
while having a reasonable diversity and no significant patterns in
the sequence of selected samples. We first formulated the require-
ments, which lead us to an algorithm that we added to DrumGizmo.
Through experiments, we showed clear improvements over the old
method and also the fulfillment of the desired requirements.

However, there are still some open problems and directions to
be addressed in future work. First, in this article we assumed the
power values of the samples to be given. We could alter the setting
by allowing a transformation on the power values, thus, for example,
distributing them better over the power range. Second, the objective
function that we used could still be further refined. For example, the
diversity term (controlled by parameter β) could be modified to have
a relatively larger penalty for samples that were played very recently,
e.g., one could move away from just using linear terms. Third, hav-
ing a more general view, one could try to adapt our work to instru-
ments that are significantly different from drums. And finally, the
real quality of this work should be determined by the users them-
selves. In this direction, a user study could lead to insights about
how to further refine our approach.

References
[1] MODARTT, Pianoteq Website, 2020 (accessed November 22,

2020), https://www.modartt.com/pianoteq.

[2] DrumGizmo Team, DrumGizmo Website, 2020 (accessed
November 22, 2020), https://drumgizmo.org.

[3] SFZ Format, 2020 (accessed November 22, 2020), https:
//sfzformat.com/.

https://www.modartt.com/pianoteq
https://drumgizmo.org
https://sfzformat.com/
https://sfzformat.com/

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

0 20 40 60 80
Sample Index

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f S
el

ec
tio

ns

0 20 40 60 80
Sample Index

0

5

10

15

20

25

30

Nu
m

be
r o

f S
el

ec
tio

ns

Figure 5: The histogram of the old algorithm (left) and the new algorithm (right) of playing fast sweeps from MIDI velocity 0 to MIDI velocity
127, 8 times.

0 20 40 60 80
Sample Index

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f S
el

ec
tio

ns

0 20 40 60 80
Sample Index

0

20

40

60

80

100

120
Nu

m
be

r o
f S

el
ec

tio
ns

Figure 6: The histogram of the old algorithm (left) and the new algorithm (right) of playing MIDI velocity 80 fast for 1015 times.

0 20 40 60 80
Sample Index

0

100

200

300

400

500

Nu
m

be
r o

f S
el

ec
tio

ns

0 20 40 60 80
Sample Index

0

100

200

300

400

Nu
m

be
r o

f S
el

ec
tio

ns

Figure 7: The histogram of the old algorithm (left) and the new algorithm (right) of playing MIDI velocity 112 fast for 1015 times.

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Setting
	2.2 Notation and Terminology

	3 Requirements
	4 Algorithm
	5 Emulating Other Sample Selection Algorithms
	6 Implementation
	7 Experiments
	8 Conclusion and Future Work

