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ABSTRACT

Notebook interfaces in computing, introduced in the late
1980s, are in active modern use by data science and machine
learning communities. Related to literate computing, note-
books encourage interleaving expository text with data, code,
and figures, making for intuitive presentation of results. Dur-
ing development, they allow for nonlinear or exploratory de-
velopment, and encourage building on prior research. We
consider the application of such notebooks in audio plugin de-
velopment and analysis, providing short example notebooks
covering scenarios in DSP tutorials, white-box testing, black-
box testing, and automation of third-party tools. While not-
ing these workflows have been supported by commercial tools
for decades, we exclusively use a range of FOSS languages
and tools in our samples.

1. INTRODUCTION

We consider the scenario of developing a new phaser effect
plugin for digital audio workstations. This involves tasks such
as researching what a phaser is, learning how it operates, per-
haps exploring the underlying filters we will use, generating
some sound samples from competing products, and then mov-
ing to write and debug our own plugin.

We demonstrate a set of workflows using Jupyter[1] note-
books to explore accomplishing these tasks with notebook in-
terfaces. Many of these workflows will be immediately famil-
iar to researchers fluent in MATLAB, which offers a similar
notebook paradigm, and indeed supports all these use cases
with relevant tools and toolboxes. However, in this work we
concentrate on open-source tools, libraries, and languages,
without loss of generality.

A study of the field of the phaser effect is orthogonal to
this work, since it is only an example. For very brief context,
the effect is accomplished by applying a chain of time-varying
allpass filters with a feed-forward signal path. This results in
a pleasant modulation-class effect commonly used on electric
guitar, electric piano, synthesizers, and more. We provide
sound examples in our first example notebook, and more de-
tail on the history and approaches is available in[2, 3], or in
DAFX[4]1.

Our notebooks during development of this hypothetical
plugin include:

• Python–Shows combining prose and code to generate
an allpass filter, and plotting the filter response.

1Section 2.4.2 in the Second Edition

• Julia[5]–calling C++ instances of an STK[6] biquad
class via a foreign function interface and wrapper li-
brary. This may be considered a “virtual breadboard”
for development; we may edit our native C++ directly
and have it driven with test signals by a higher-level
language.

• Python–loading an arbitrary LADSPA plugin for which
we may or may not have the source, and driving it with
a test signal. This can be used for black-box validation
of our own plugins or studying third-party effects.

• Faust[7] (via Python and the shell)–driving external
tools in the course of implementation of a phaser. Faust
is a very powerful domain-specific time-domain lan-
guage and lets us code up a phaser in a few lines of
code–in fact the standard library includes such modu-
lation effects as primitives! Because the language does
not yet integrate with Jupyter notebooks directly via
a kernel or similar, we demonstrate shelling out to the
Faust tools to have a notebook act as a build automa-
tion or report generation tool

These notebooks have been uploaded as part of this work;
readers may wish to browse them after scanning this pa-
per. However the descriptions in the paper are intended
to stand on their own, and a screenshot of the first note-
book is provided. The direct URL at the time of writing
is https://github.com/tskare/lac2020demo; a redirector has
been set up at at https://bit.ly/2TqcQuG in case this changes
in the future, which is not expected.

We note some source repository browsers have notebook-
viewing facilities for .ipynb and similar formats, which is con-
venient; we use GitHub for this work to demonstrate. In case
the viewer does not support audio widgets, phaserdemo.mp3
is provided as a standalone file for this case.

A side note on machine learning: Machine Learning and
Deep Learning are very popular topics across many domains
of research. Such notebooks are a common workflow in ML
and Data Science; many getting started guides use them. Be-
cause they are so prolific, we intentionally avoid discussing
ML workflows in this work and aim to stay within the digital
audio effect development domain.

Finally, to aid in conveying motivation and use case, a
demonstration video developed for the conference presenta-
tion will be provided/linked with the repository.

1.1. Installation

Readers may follow along by installing the following software:

https://ccrma.stanford.edu
mailto:travissk@ccrma.stanford.edu
https://ccrma.stanford.edu
mailto:abel@ccrma.stanford.edu
https://github.com/tskare/lac2020demo
https://bit.ly/2TqcQuG
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Python: likely already installed on your system. We
use Python 3 for this work; noting that Python 2 has been
officially sunset as of January 1, 2020. We would suggest
that if you do not have Python installed already, consult your
system administrator or package manager, as this may affect
your system in a wide manner.

Conda (Optional): This work was developed using Conda,
a package manager that is supported on Linux, MacOS, and
Windows, and allows switching between different environ-
ments for different projects. https://docs.conda.io/en/latest/

Jupyter via conda or pip: https://jupyter.org/install
Julia via Conda, your package manager of choice, or from

their homepage at https://julia-lang.org. The Julia Project
homepage may offer the most up-to-date version; we updated
to 1.3.1 before paper submission.

STK, the Synthesis Toolkit in C++[6]. This is for fol-
lowing along with the second example. A mirror is available
at https://github.com/thestk/stk

Julia’s CxxWrap package via the built-in package man-
ager (press right-bracket, ], in the Julia REPL and enter
“add CxxWrap”). This is for easily wrapping C++ classes.
This is only one of a handful of methods for wrapping or
calling C/C++ code. This seemed to work better than the
built-in libraries when running inside Jupyter, but readers are
encouraged to evaluate the others for their use case.

Faust via some package managers, or the Faust Home-
page at https://faust.grame.fr/.

Next, we present the four use cases.

2. USE CASE: EDUCATION (PYTHON)

In this section we explore a standard use of notebooks, presen-
tation of interleaved prose, code, and results. We note that
this use of notebook interfaces is common in other domains.

Here we explain a simple digital phaser effect. In the
opening paragraphs, we list some commercial phaser effects
from MXR, Electro-Harmonix, and Eventide, and fetch a Cre-
ative Commons image of an MXR Phase 90 pedal from the
web (local filesystem works as well and is better for posterity).

We provide an inline audio example of the phaser, so the
reader may immediately understand what our desired end
result may sound like.

A screenshot of the second half of this notebook is pre-
sented in Figure 1 [after the main paper text and bibliog-
raphy]. Note we interleave explanatory text, an equation,
Python numerics code, and filter response plots.

There, we explain the digital allpass filter that will be
a building block for our implementation. The introduction
links to resources we cite here, to guide readers to deeper
study. LATEX-style equations are rendered in the Markdown
prose via MathJax.

Finally, we use SciPy’s freqz implementation to obtain
the frequency and phase response of the first-order digital
allpass filter. We leverage the example code from the freqz
documentation to plot the frequency and phase responses in-
line in the notebook.

Readers who wish to dive deeper may download the note-
book and experiment. For instance, they may wish to alter
the allpass parameters gi, or extend the notebook from an in-
troductory level to a deep-dive level by adding text discussing
virtual analog considerations.

While again we emphasize this exploration is a standard
use of data science notebooks, rather than a novel work, we
call out the benefits of interleaving product images, under-
lying equations, study of the building blocks, implementa-
tion, and sound example in a single browser window. Be-
yond display in a browser, JupyterLab also allows export-
ing notebooks with code, data, results, and commentary all
“baked in” to slide-style presentations, HTML, lecture-note-
style PDFs, or LATEXwhich could be integrated directly into
an academic paper.

Tools also exist to host live versions of the notebook, or
have multiple researchers working in the same session; these
are outside the scope of this paper.

3. USE CASE: WHITE-BOX PRODUCTION C++
ANALYSIS (JULIA)

Next, we consider the case of using notebooks to provide a
“report” on production C++ code.

A variety of workflows for plugin development exist. Anec-
dotally, we hear it is common to prototype in a high-level
language such as MATLAB before porting algorithms to op-
timized code, usually in C++. In recent years, Mathworks
has even introduced compilation direct to plugins to facilitate
prototyping and experimentation directly in DAWs.

In this section we propose use of notebooks to call C++
code in development. The hypothetical code under test is
considered “white box;” that is, in this section our imaginary
company has developed both the notebook and the plugin
code. We may be porting C++ from a Matlab prototype, and
wish to make sure inputs and outputs match, or we may be
building our plugin from scratch and would benefit from a test
bench that drives the plugin and obtains various plots, inputs,
and outputs for analysis, or sharing with our development
team.

The Julia language is used without loss of generality; we
note that in the next section we will call C++ from Python
for a different application. While outside the scope of this
paper, interested readers might consider the cffi module (C
Foreign Function interface) in Julia, or CPython extension
capabilities. Finally, C++ interpreter kernels exist for note-
book computing and we could write our plugin code directly
in the notebook.

Development of this notebook is fairly straightforward.
We imagine a use case is that we are debugging the Biquad fil-
ter present in the Synthesis Toolkit (STK)–this may be found
in src/BiQuad.cpp in the STK repository. Julia supports
multiple ways of calling C/C++ code, including a built-in
ccall2, designed to be a low-overhead, no-glue method of
calling C and Fortran numerics libraries. Other methods such
as Cxx and CxxWrap packages may be added from the built-
in package manager. We use the latter, CxxWrap, currently
available via GitHub3, and installable via the built-in package
manager as discussed in Section1.1.

2https://docs.julialang.org/en/v1/manual/calling-c-and-
fortran-code/

3https://github.com/JuliaInterop/CxxWrap.jl

https://docs.conda.io/en/latest/
https://jupyter.org/install
https://julia-lang.org
https://github.com/thestk/stk
https://faust.grame.fr/
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://github.com/JuliaInterop/CxxWrap.jl
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3.1. C++ Work Required: Wrapping the Class

The CxxWrap approach requires some prep work outside of
the notebook, but this is straightforward. We write some
standardized glue code then use CMake to build a .so shared
library.

We must define a function to expose our method as a Julia
module. This is as follows; not all methods are included for
brevity.

#include "jlcxx/jlcxx.hpp"
JLCXX_MODULE define_module_biquad(

jlcxx::Module& mod)
{

mod.add_type <stk::BiQuad >("STKBiQuad")
.constructor <>()
.method("setCoefficients", &stk::BiQuad::

setCoefficients)
.method("sampleRateChanged", &stk::BiQuad

::sampleRateChanged)
.method("setB0", &stk::BiQuad::setB0)
.method("setB1", &stk::BiQuad::setB1)
.method("setB2", &stk::BiQuad::setB2)
.method("setA1", &stk::BiQuad::setA1)
.method("setA2", &stk::BiQuad::setA2)
.method("tickOne",&stk::BiQuad::tickOne);

}

Whereas most functions like setCoefficients are native STK
functions, tickOne was added to work around specifying an
overloaded function in the call to add_type. STK’s tick has
several variants and this was currently the easiest way we
found to disambiguate between them. Also, this way we do
not depend on familiarity with the StkFrames class and only
deal with primitive types in the notebook. We provide our
modified source in BiQuadJulia.cpp and associated CMake
file; the only other addition for the sake of completion is a
tickOne implementation. A minimal one:

float BiQuad::tickOne(float in) {
StkFrames frames(1, 1);
frames[0] = in;
StkFrames framesout = tick(frames);
return framesout[0];

}

On the module side, loading the library begins with the min-
imal:

module STKBiquad
using CxxWrap
@wrapmodule("/home/$USER/src/third_party/

stk/src/lib/libbiquadtestlib", :
define_module_biquad)

function __init__()
@initcxx

end
end

Now we may drive and plot our C++ function in Julia.
Next, we explore loading shared libraries from another

language, Python:

4. USE CASE: BLACK-BOX BINARY PLUGIN
ANALYSIS (PYTHON)

We may wish to drive and analyze a plugin on a “virtual lab
bench.” Perhaps we wish to black-box test our build artifacts
to validate with a test suite, or perhaps we wish to script an
analysis of which third-party saturation plugins alias when
running at 44.1kHz, for example.

In this section we load and drive a simple LADSPA plugin.
A simple v1 plugin is launched directly as a standard library;
we note a complete production workflow would instantiate
and call LV2 plugins through the Liiv library. We note the
existence of Python-LADSPA projects on GitHub; we did not
evaluate these so that our notebook requires no dependencies
beyond the built-in ctypes.

Here, we enumerate available LADSPA plugins from the
commandline (via the listplugins program included with
the SDK) and then in our notebook, use the ctypes module to
load any of those plugins. We declare the LADSPA interface
to ctypes in terms of relevant structures and functions, then
may load the library and create a plugin in memory. LADSPA
is fairly unique in that the plugin libraries expose only one
function, which retrieves a reference to the Nth plugin in
the library. The reference structure in turn contains function
pointers which allow connecting control and sound buffers,
reading metadata, and processing audio data.

Because a LADSPA wrapper may be more immediately
useful than our notebooks, we include the wrapper code di-
rectly in Listing 1. Users may load and call into a plugin with
Python code such as:
plugHandle = 0
# Load the second plugin in a shared library.
plugPtr = loadPlugin(

'/myhome/dev/testplugin.so', 1)
plugInst = plugPtr[0] # dereference pointer
print("Plugin: %s by: %s, (c) %s" % (

plugInst.Name,
plugInst.Maker ,
plugInst.Copyright))

print('ports:')
for i in range(plugInst.PortCount):

print("%s - %s" % (
plugInst.PortNames[i],
plugInst.PortDescriptors[i]))

As we provided type information to ctypes, runtime type
checking is performed. LADSPA typedefs were included in
the wrapper to help avoid type confusion and increase read-
ability.

5. USE CASE: CALLING EXTERNAL TOOLS
(FAUST)

A final, fourth notebook considers the case where we would
like to use the exploratory, cross-media notebook paradigm
but have existing tools and do not want to use C foreign
function tools or write a new notebook kernel.

As a concrete case, consider that we wish to report on the
architecture and results of a Faust plugin in development.

We do note the existence of faust_python4 from 2015
4https://github.com/marcecj/faust_python

https://github.com/marcecj/faust_python
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and a wrapper for Julia widgets that leverages this, currently
in development over the last months5.

Development of this notebook is perhaps the most straight-
forward. A notebook cell that begins with the exclamation
point operator will execute that command in the shell.

!echo hi world

will output “hi world”, for example. We can use this func-
tionality to display a .dsp file in development, call faust to
compile it, invoke faust2svg to generate the system diagram,
and display that artifact with IPython’s native SVG render-
ing support in the notebook.

This may be seen as build automation, though extending
things a bit further, it could be used to combine algorithm de-
scriptions, relevant Faust code, plots of system response, and
generated audio demos. There are opportunities for signifi-
cant further work here, as described in the next section. On
its own, this style of notebook can demonstrate that processes
spanning multiple tools may be combined and automated in
place of a Makefile or script. We can glue together exist-
ing workflows quickly, and spend more time on exploration
and development of our hypothetical plugin–a common goal
among all these processes.

6. FURTHER WORK

The “virtual test bench” that runs LADSPA plugins would
ideally be extended to use LV2 and/or VST, as development
has moved to those platforms for Linux (for MacOS, Au-
dioUnit is worth considering).

There are many opportunities for extending the Faust
notebook. As mentioned, there are some open-source libraries
in the field for loading plugins or wrapping Faust’s compila-
tion functionality with the Python foreign function interface.
This could be investigated, toward having the full Faust de-
velopment workflow available to a notebook. We could also
call the excellent Faust web-based tools and compiler as an
API, or have those system-local, to be able to develop, build,
and test actual plugin binaries within one notebook. Espe-
cially once inline coding opportunities are added, this could
be the framework for a set of interactive articles on introduc-
tory effects plugin signal processing.

7. CONCLUSIONS

We suggested the use of notebook workflows, popular in data
science and machine learning communities, for subtasks in-
volved in plugin development. Both Python and Julia were
used at different times, and we shelled out to Faust to demon-
strate driving tools not yet integrated in the notebook ecosys-
tem. Markdown provides prose and equation support for all
notebooks.

As a secondary tangible result, we provide generic wrap-
per code for loading LADSPA v1 plugins in Python.
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Figure 1: A screen capture of the second half of Notebook 1, described in Sec. 2
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import ctypes

# Declare interfaces to the structures and functions we'll call.

# typedefs and constants
LADSPA_Data = ctypes.c_float
LADSPA_Properties = ctypes.c_int
LADSPA_Handle = ctypes.c_void_p

LADSPA_PortDescriptor = ctypes.c_int
kLADSPA_PORT_INPUT = 0x1
kLADSPA_PORT_OUTPUT = 0x2

LADSPA_PortRangeHintDescriptor = ctypes.c_int;
# hint constants omitted so this fits on one page; please reference the .h file.

class LADSPA_PortRangeHint(ctypes.Structure):
pass

LADSPA_PortRangeHint._fields = [
("HintDescriptor", LADSPA_PortRangeHintDescriptor),
("LowerBound", LADSPA_Data),
("UpperBound", LADSPA_Data)

]

class LADSPA_Descriptor(ctypes.Structure):
pass

LADSPA_Descriptor._fields_= [
("UniqueID", ctypes.c_long),
("Label", ctypes.c_char_p),
("Properties", LADSPA_Properties),
("Name", ctypes.c_char_p),
("Maker", ctypes.c_char_p),
("Copyright", ctypes.c_char_p),
("PortCount", ctypes.c_ulong),
("PortDescriptors", ctypes.POINTER(LADSPA_PortDescriptor)),
("PortNames", ctypes.POINTER(ctypes.c_char_p)),
("PortRangeHints", ctypes.POINTER(LADSPA_PortRangeHint)),
("ImplementationData", ctypes.c_void_p),

# Interface is via function pointers in the struct.
("instantiate", ctypes.CFUNCTYPE(LADSPA_Handle , ctypes.POINTER(LADSPA_Descriptor),

ctypes.c_ulong)),
("connect_port", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle , ctypes.c_ulong)),
("activate", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle)),
("run", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle)),
("run_adding", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle , ctypes.c_ulong)),
("run_adding_gain", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle , LADSPA_Data)),
("deactivate", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle)),
("cleanup", ctypes.CFUNCTYPE(ctypes.c_int , LADSPA_Handle))

]

# The actual library has only one function.
# The argument , |index|, can choose one of N plugins in the library.
# Indices beyond that range are NULL.
def loadPlugin(name = '/usr/lib/ladspa/delay.so', index=0):

plugin = ctypes.CDLL(name)
plugin.ladspa_descriptor.argtypes = [ctypes.c_ulong]
plugin.ladspa_descriptor.restype = ctypes.POINTER(LADSPA_Descriptor)
return plugin.ladspa_descriptor(index)

Listing 1: Code to define the LADSPA interface in Python via ctypes.
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