
Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

OSPW 2.0 – AN OPEN SOURCE LINUX-BASED DSP SERVER
FOR AUDIO APPLICATONS

Clemens Fiechter Thomas Resch
Research & Development Research & Development

Hochschule für Musik Basel FHNW Hochschule für Musik Basel FHNW
clemens.fiechter@students.fhnw.ch thomas.resch@fhnw.ch

ABSTRACT

The Open Signal Processing Workstation (OSPW) 2.0 is a Linux-
based open software platform, designed for rapid prototyping and
the development of digital signal processing (DSP) audio algorithms
and corresponding user interfaces (UIs). Since audio interface and
computer hardware can be chosen almost completely freely, the sys-
tem can be easily integrated into any existing audio network and stu-
dio environment. Besides the necessary hardware components,
OSPW 2.0 consists of the graphical programming environment Pure
Data (Pd) for the signal processing, a script for the start-up procedure
and initial configuration, and a webserver which generates browser-
based UIs for an arbitrary number of remote clients automatically.
All connected UI clients are synchronized among each other. This
enables the simultaneous operation of applications by multiple users.
Custom interfaces can be realized by extending the Javascript UI
framework.

1. INTRODUCTION

The described system OSPW 2.0 is the successor of the OSPW 1.0,
a project with a similar goal that never came into production [1]. The
promising findings of the OSPW 1.0 were analyzed and evaluated
and then adapted and re-implemented exclusively using open source
technologies. In recognition of one of the first successful music DSP
computation platforms, the ISPW [2], this prototype and the prede-
cessor were named OSPW. To facilitate readability, the version num-
ber 2.0 will not be used in the remainder of this paper.
 OSPW consists of a DSP server running Pd [3], that can be re-
motely controlled by any device on the same network that can exe-
cute a web browser. The web interface is automatically generated
based on the underlying Pd patch. In contrast to hardware currently
used in professional studio, broadcast or live sound environments
which focus primarily on standard audio formats like two-channel
stereo, or common surround formats (5.1, 7.1, etc.), algorithms de-
veloped for the OSPW are not bound to standard channel-formats.
Depending on the sound card and the performance of the computer
components used, massive multichannel operations can be realized;
for example, high-order Ambisonics, Wavefield synthesis renderers
or multiuser binaural monitoring applications.
 DSP algorithms for OSPW are implemented with the visual pro-
gramming environment Pd, which is widely used in academic and
experimental musical contexts and environments. It provides an API
in the programming language C and allows "intermediate" program-
mers and artists in the field of media technology to use the system
through its easy-to-use graphical programming interface. Using Pd
as an audio backend has the big advantage that it has been in use and
extensively tested for decades. It supports parallel programming
with multiple threads natively through the pd~ object [4]. The pos-

sibility of distributing different instances of an algorithm to all avail-
able processor cores makes optimal use of current CPUs and max-
imizes the available performance - one of the most important criteria
for an external DSP server.
 This paper starts with a brief discussion of related work in section
2. Section 3 describes the system design including necessary hard-
ware and software components and basic usage of the OSPW. Sec-
tion 4 outlines the implementation details of all components. Section
5 describes three implemented demo applications. As a part of this
project, a repository with the source code including documentation
and tutorials is available online [5]. This allows any interested per-
son to set up his/her own custom version of the OSPW.

2. RELATED WORK

There are several commercial DSP systems available whose con-
cepts are similar to those of the OSPW. SoundGrid by Waves Inc. is
a DSP server that runs on a Linux machine with a general-purpose
CPU [6]. The main difference to OSPW is that it is a closed-source
proprietary product. Only the manufacturer’s plugins and those of a
few authorized companies run on the hardware. The UAD DSP de-
vices by Universal Audio [7] follow a similar approach as Sound-
Grid. They work with special UA format plugins only. The Tesira
platform is a highly configurable DSP server by the company Biamp
[8]. It is also programmable with its own algorithms. However, the
target group of these systems are not studio environments but rather
multi room speech conferences and large-scale sound installation at
exhibitions or hotels. Also noteworthy is the Bela project. It is an
open platform for ultra-low latency audio and sensor processing [9].
It runs libpd [10] on an embedded computer with an additional, cus-
tom developed microcontroller board with sensor inputs. Bela
doesn’t provide user interfaces. Instead it is meant to be controlled
by sensors. Mira in combination with Max/MSP is conceptually sim-
ilar to the OSPW approach: a computer running the DSP combined
with a remote application [11]. In contrast to the project presented in
this paper, both tools are closed source. FreeDSP is a low-budget
open source DSP module [12] which can be configured with the
graphical programming environment SigmaStudio. Due to the lim-
ited number of inputs and outputs of the used DSP board, applica-
tions of this project are rather stand- alone effect processors.

3. SYSTEM DESIGN AND USAGE

This section provides a description of hard- and software compo-
nents used for the OSPW prototype, brief instructions for the setup
of the necessary software components and the basic usage. For de-
tails including a complete installation guide, please refer to the doc-
umentation on the Git repository [5].

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

 OSPWs system architecture can be described as a server-client
model where all signal processing is executed on the server hardware
and an arbitrary number of clients can be connected for remote con-
trolling and monitoring purposes. An external computer has to be
used for the algorithm design in Pd. Once the design is completed,
the user can transfer the code to the server, where it is analysed for
automatic UI generation and executed. Any device with a browser
running in the same network can be used as remote control for the
loaded Pd patch. For OSPW server and remote client(s) to work to-
gether, they must be connected to the same network. The most ele-
gant solution (which is also used in the prototype) is to configure the
server as a wireless access point.

3.1. Hardware

The audio I/O of the OSPW platform utilizes the Advanced Linux
Sound Architecture (ALSA). The prototype was built with the LX-
Dante PCIe card by Digigram. Its 128 inputs and outputs offer flex-
ible channel routing and enabled testing with many physical inputs
and outputs. Although the card with its closed source Linux driver
does not quite fit into OSPWs philosophy, it made an easy integra-
tion into the testing environment possible (a Dante-enabled mixing
console). For a custom installation of a fully functional OSPW, ba-
sically any ALSA compatible soundcard can be used.
 An x86 processor is not required but the target operating system
must support the software components listed in the following sec-
tion. For details on the prototype specifications regarding other hard-
ware components please refer to the publication about the OSPW 1.0
[1].

3.2. Software

The software consists of two main parts: the audio backend and the
OSPW server. The audio backend of the OSPW platform is based on
a plain Pd Vanilla installation. Pd provides a graphical user interface
and a C API for DSP development and control structures. The OSPW
Server is a Node.js [13] server application which enables the user to
control and interact with the running Pd instance. Several software
components are necessary for a working OSPW installation:

• A Linux installation with ALSA support
• Pd
• Node.js
• The OSPW software package, containing scripts, the

server and the demo applications.

The GUI control elements are generated with the open source frame-
work NexusUI [14]. NexusUI is an open source project and already
implements typical audio widgets such as sliders and dials.

3.3. Usage

After installing and setting up all the necessary components from the
Git repository, the server is configured to start automatically with
Linux’s systemd init-system. After connecting a client to OSPWs
network, the server’s IP address has to be entered in the client’s
browser in order to render the main page. On this page, the user can
either select one of the demos or choose one of his own uploaded Pd
patches. After selecting an application, the server parses the corre-
sponding patch and automatically serves the UI to the connected cli-
ent(s). For each parameter to appear in the UI, a matching Open
Sound Control (OSC) string must be included in the Pd patch. This

is done as shown in figure 1 by placing a comment containing the
string somewhere in the patch (ideally close to the corresponding
parameter). The syntax for the string is /ospw/x/y/widgettype/param-
eterName/initValue:

• The string has to start with ‘/ospw’.
• x and y are grid coordinates for placing the object within a

symmetric grid.
• /widgettype defines the generated interface object. Possi-

ble values are button, toggle, number, dial, hslider, vslider.
• /parameterName can be chosen freely and results in the

rendered widget label.
• /initValue initializes the interface object with the entered

value.

Figure 1: Pd patch with two OSPW parameters.

Alternatively, the automatic rendering can be set to a channel-based
grid by placing a comment "usechannellayout" somewhere in the Pd
patch. In this case, the grid coordinates are replaced by channel num-
ber and y position within this channel. In order to implement a cus-
tom GUI for the OSPW platform, the NexusUI framework has to be
extended with new Javascript objects (widgets). The example GUI
for the binaural headphone monitoring application (see section 5.2)
is based on a pre-existing widget, a two-dimensional panning inter-
face, which has been modified and given additional functionality
specific to the application.

4. IMPLEMENTATION DETAILS

The Node program consists of two parts: the node server, and the
index.html page. They interact with each other via web sockets.

Figure 2: OSPW client/server communication scheme.

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

Any parameter change in any client is sent via OSC as Universal
Data Package (UDP) to Pd. The port is configurable. The communi-
cation between server and clients works as follows:

• The server starts in the state ‘No patch loaded’. Every cli-
ent that connects to the server will render the main menu,
allowing the user to select an application.

• Once a client selects an application, the server parses the
corresponding Pd patch, searching for strings that start
with /ospw (see figure 1) and stores all obtained data
(widget type, position, name etc.).

• A broadcast message is sent to all connected clients. The
GUI of the selected application will be rendered on all cli-
ents. The state of the server changes to ‘Patch loaded’.

• If a new client connects to the server in this state, it loads
the GUI of the current application.

• Each time a parameter is changed by a client, the new
value is broadcasted to all other connected clients, allow-
ing every client to update its interface. This way all con-
nected clients are kept in sync with each other and can be
operated at the same time.

5. EXAMPLE APPLICATIONS

Three exemplary applications have been implemented and will be
described in the following section. The first two examples also serve
as tutorials for OSPWs automatic interface generation and the crea-
tion of custom user interfaces. The third example is a mono-to10-
channel convolution reverb and was used for evaluating and testing
the parallel execution of several instances with the pd~ object.

5.1. Mixer

The first demo application is a simplified version of a digital mixing
console. 16 audio input channels can be processed with a 3-band
equalizer and the gain of the audio signal can be adjusted with a
fader. The creation of a fully functional mixing desk was not the in-
tention of this demo, it rather serves as an example and tutorial on
how the OSPW server parses a patch and dynamically creates the
corresponding interface, based on the information it finds in the
patch.

Figure 3: OSPW mixer demo.

5.2. Binaural

The second application is a binaural monitoring application for eight
individual headphone mixes and serves as an example and tutorial
for creating custom OSPW GUIs. The interface provides the user
with eight circles (each representing a sound source) for each mix
which can be placed in the virtual space around the listener as shown
in figure 4 below. Each of the eight mixes can be chosen with the
tabs on top of the GUI. The number of sound sources and mixes is
only limited for this demo; in theory an infinite number of both
sources and binaural mixes can be controlled (only limited by hard-
ware resources). On every interaction with the widget, distance and
angle of each source, in respect to the zero-degree axis of the listener,
are calculated and sent to the DSP server. In addition to controlling
the position of the sources, the circle in the middle representing the
listeners’ head can be controlled with an external head tracking de-
vice (for example the open hardware tracker described in [15]), thus
providing the listeners with a dynamic binaural synthesis. The dy-
namic binaural rendering in Pd is realized with the vas_binaural~
object of the VAS library [16].

Figure 4: OSPW binaural monitoring.

5.3. Multichannel Reverb

The ten different channels for the convolution reverb were created
by sampling the same reverb preset with different reverb and pre-
delay times. The dry/wet parameter can be controlled for each chan-
nel individually. The convolution is realized with the vas_reverb~
object of the VAS library which performs a single-threaded non-
equal partitioned convolution. Ten instances of the Pd patch per-
forming the DSP are loaded from the main patch with the pd~ object
in order to distribute the different reverb instances among all of the
CPU cores.

6. CONCLUSION

OSPW is an easy-to-use open source DSP platform which can be
built with off-the-shelf hardware components. The free choice of
sound card (as long as it is ALSA compatible) makes the integration
in any existing audio environment possible.

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25–27, 2020

 By using Pd as audio backend, the signal processing can be im-
plemented both in the C programming language and graphically. The
graphical access also enables "intermediate" programmers and art-
ists in the field of media technology to use the system. Pre-existing
Pd objects and patches of the large Pd developer community can be
used as well. In order to automatically generate GUIs for existing Pd
applications, only very slight patch modifications as described in
section 3 are necessary.
 The synchronization of all connected clients allows multiple us-
ers to use an application simultaneously. The first demo app pre-
sented in section 5 illustrates this in a simple manner. Several users
can control a mixing console at the same time and even from differ-
ent positions. This can be very interesting, especially for artistic ap-
plications such as a multi-player acousmonium. The second demo -
the binaural monitoring application - can be realized at a fraction of
the cost of a commercial solution and could be easily expanded to
more binaural mixes and sources.
 OSPW enables intuitive, network-based access to Pd. Finished
patches are simply pushed into the designated folder and can then be
selected and operated via remote client. Currently only the most im-
portant UI elements (dials, sliders and number boxes) are imple-
mented for automatic interface generation. To ensure intuitive han-
dling for more complex DSP algorithms, future updates should in-
clude more sophisticated UI elements such as multisliders or fre-
quency domain editors (as they are usually used for filters). Also, a
thumbnail view of the Pd patch that is currently running would be a
nice feature in order to give the user an idea of what kind of DSP
algorithm is currently executed on the server.

7. ACKNOWLEDGEMENTS

This work was supported by the OSPW 2.0 project, funded by the
Maja Sacher-Stiftung.

8. REFERENCES

[1] H. Stenschke, T. Resch, P. Glaettli, R. Riedl, C. Fiechter,
“OSPW (Open Signal Processing Workstation) - Development
of a Stand-Alone Open Platform for Signal-Processing in AV-
Networks”, Audio Engineering Society Convention 142, 2017.

[2] E. Lindemann, M. Starkier, and F. Dechelle. “The IRCAM
Musical Workstation: Hardware Overview and Signal
Processing Features”, Proceedings of the 1990 International
Computer Music Conference. San Francisco: International
Computer Music Association, 1990.

[3] M. Puckette, “Pure Data: another integrated computer music
environment”, Proceedings of the Second Intercollege
Computer Music Concerts, 1996.

[4] M. Puckette. “Multiprocessing for Pd”, [Online], URL:
http://www.pdpatchrepo.info/hurleur/multiprocessing.pdf,
[accessed 2019, December 27].

[5] C. Fiechter, T. Resch, “Git Repository of the OSPW 2.0”,
[Online], URL: www.github.com/cfiechter/OSPW, [accessed
2020, August 30].

[6] Waves Inc., “SoundGrid Systems Website”, [Online], URL:
https://www.waves.com/soundgrid-systems, [accessed 2019,
December 27].

[7] Universal Audio, “Universal Audio Website”, [Online], URL:
https://www.uaudio.com/, [accessed 2019, December 27].

[8] Biamp, “Biamp Tesire Website”, [Online], URL:

https://www.biamp.com/products/tesira, [accessed 2019,
December 27].

[9] G. Moro, S. Bin, R. Jack, C. Heinrichs, A. Mcpherson,
“Making High-Performance Embedded Instruments with Bela
and Pure Data” in Proceedings of the International
Conference of Live Interfaces, 2016.

[10] P. Brinkmann, P. Kirn, R. Lawler, C. Mccormick, M. Roth,
“Embedding Pure Data with libpd”, URL: https://www.uni-
weimar.de/kunst-und-gestaltung/wiki/images/Embed-
ding_Pure_Data_with_libpd.pdf, [accessed 2019, December
27].

[11] S. Tarakajian, D. Zicarelli, J.K. Clayton, “Mira: Liveness in
iPad Controllers for Max/MSP”, Proceedings of New
Interfaces for Musical Expression (NIME), 2013.

[12] S. Merchel, L. Kormann, “FreeDSP: A Low-Budget Open-
Source Audio-DSP Module.”, DAFx, 2014.

[13] OpenJS Foundation, “Node.js”, [Online], URL:
https://nodejs.org/, [accessed 2020, January 11].

[14] B. Taylor, J. Allison, W. Conlin, Y. Oh, D. Holmes,
“Simplified Expressive Mobile Development with NexusUI,
NexusUp and NexusDrop”, Proceedings of the International
Conference on New Interfaces for Musical Expression
(NIME), 2014.

[15] T. Resch, M. Hädrich, “The Virtual Acoustic Spaces Unity
Spatializer with custom head tracker”, 5th International
Conference on Spatial Audio ICSA, 2019.

[16] T. Resch, C. Böhm, S. Weinzierl, „VAS – A cross platform C-
library for efficient dynamic binaural synthesis on mobile
devices“, AES, International Conference on Headphone
Technology, 2019.

