
Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

SYNTHBERRY PI: AN AUTONOMOUS SYNTHESIZER BASED ON RASPBERRY PI

Costantino Rizzuti

Artis Lab
Cosenza, Italy

costantinorizzuti@gmail.com

Fabrizio Rizzuti

Artis Lab
Cosenza, Italy

fabrizio.rizzuti@gmail.com

ABSTRACT

SynthBerry Pi is the first prototype of an autonomous synthesizer
based on PDSynth. PDSynth is a toolkit for creating programmable
digital synthesizers made using the Pure Data visual development
environment. To run PDSynth synthesis architectures a Raspberry Pi
mini computer was used. Eight slide potentiometers are connected to
the mini computer to create a control surface that makes it possible
to control PDSynth’s architectures. SynthBerry Pi is, therefore, a
compact standalone synthesizer capable of creating sounds by using
Pure Data patches.

1. INTRODUCTION

In about the last twenty years, the miniaturization of computing sys-
tems and the growing diffusion of open software and hardware tech-
nologies allowed artists and designers to access technologies until
then only available for technicians and engineers working in large
university or business research centers. As Noble [1] mentions, all
of this has created absolutely new and never seen conditions, mak-
ing possible the emergence of new fields of research in art, design
and also music such as: Physical Computing and Interaction Design.
In fact, before that the idea of artists or designers writing code or
designing hardware was almost unheard of. Today, not only it has
become commonplace, but it has become an important arena of ex-
pression and exploration. Nowadays, this deep bound between tech-
nology and artistic creation is become a vital and vibrant phenomena
that shapes both art and technology.

Even in computer music the growth of this technologies lead to
interesting consequences like the positive convergences with already
existing trends such as the practice of self-constructing synthesizers,
the development of new musical interface and the building of ex-
perimental electronic musical instruments. These practices defined
as analog synthesizer do it yourself, in its abbreviated form: synth
DIY [2], aimed at the realization of electronic musical instruments,
have had a great diffusion in recent years especially in relation to the
increasing use of modular eurorack synthesizers.

This work presents SynthBerry Pi: a prototype of an autonomous
synthesizer based on Raspberry Pi mini computer. The prototype
uses Pure Data patches to generate and process sounds. The col-
lection of patches used for this project is called PDSynth: a toolkit
for creating programmable digital synthesizers. The Raspberry Pi
mini computer was used to run PDSynth synthesis architectures in
order to create a compact standalone synthesizer. SynthBerry Pi is
equipped with an hardware control interface consisting of eight slide
potentiometers that allow to change the parameters of the Pd patches.

Raspberry Pi1 is a well known mini computer. The project is
based on a Broadcom system-on-a-chip (BCM2836 for the Rasp-

1For more information refer to the Raspberry Pi Foundation website:
https://www.raspberrypi.org/.

berry Pi 2, or BCM2837 for Raspberry Pi 3 and BCM 2711 for the
latest Raspberry Pi 4 Model B), which incorporates an ARM proces-
sor, a VideoCore IV GPU and RAM memory (from 512 Megabytes,
to 1 Gigabyte, up to 4GB for the latest version). The boards do
not have neither hard disk nor a solid state memory unit, relying
instead on an SD card for the boot and for the management of the
non-volatile memory.

In the last years many audio projects have been realized around
the Raspberry Pi platform [3, 4, 5, 6]. Moreover, Eurorack modules,
such as the Terminal Tedium project and Nebulae 2 from Qu-Bit
Electronix, use Raspberry Pi to create reprogrammable modules that
can be used to implement audio processes developed through lan-
guages and development environments for audio (from C and C++
as programming languages, up to to Pure Data, SuperCollider and
CSound as languages dedicated to audio).

2. PDSYNTH

PDSynth is a toolkit for creating programmable digital synthesizers.2

The name derives from the acronym of the sentence: Programmable
Digital Synthesizer. But also the acronym PDSynth allows to indi-
cate a synth made with Pure Data (Pd) [7]: the well known visual
development environment for multimedia applications used to im-
plement the toolkit.

The development of this project started in the Autumn 2015 from
an initial idea to create a series of easily interfaceable Pd patches ca-
pable of simulating the behavior of the essential modules of an ana-
log synthesizer. The PDSynth modules implement different sound
generation and processing systems and are all controllable via the
Open Sound Control (OSC)3 protocol. Users can easily create and
interconnect the modules together to build high-level architecture
for real-time sound synthesis and processing. The OSC protocol
[8, 9] was choosen because it is becomed, along the years, a standard
format for sharing data related to musical performance (parameters,
sequences of notes, gestures) between musical instruments (mainly
synthesizers and electronic instruments), calculators and other mul-
timedia devices. This protocol, from the late 1990s, is becomed a
valid alternative to MIDI, especially because it is open, flexible and
extendable.

Open Sound Control was choosen because it allows to easily
create a reliable and robust communication system among the vari-
ous modules inside Pd allowing, also, a simple exchange of network
messages to and from the outside. In fact, the OSC messages can
be easily managed through the native message system provided by
Pure Data. All this simplifies the creation of the control systems of
the modules and allows to control the synthesizers through external

2The PDSynth toolkit can be downloaded from Artis Lab website:
https://www.artislab.it.

3For further information, refer to the project’s official website:
http://opensoundcontrol.org.

https://www.artislab.it
mailto:costantinorizzuti@gmail.com
https://www.artislab.it
mailto:fabrizio.rizzuti@gmail.com
https://www.raspberrypi.org/
https://www.artislab.it
http://opensoundcontrol.org

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

controllers and control surfaces. Moreover, the OSC protocol allows
to have both an higher data resolution and greater parameter space
than what is offered by the MIDI protocol.

A library of external objects was used to implement the control
functions through the OSC protocol. The library provides useful ob-
jects only to realize the management of the OSC messages inside
Pure Data, so for the transfer of OSC packets through the network,
a second library, called IEMnet, was used. In particular, it is possi-
ble to use the udpreceive object to implement within Pd a server
listening on a given port for receiving OSC messages.

The processing of messages received from the server can then
be carried out using the objects provided by the OSC library. The
unpackOSC object is useful for converting OSC packages, made
up of binary data, into messages compatible with the Pure Data in-
ternal messaging system. Then the pipelist object is inserted to
obtain a temporally coherent message scan in the case in which mes-
sages with a given timestamps are received. Finally, the OSC library
provides an object, called routeOSC, which allows the addressing
of messages according to a hierarchical structure defined by the ad-
dress space. The arguments supplied to the object define a set of
addresses to which corresponding messages can be routed.

2.1. PDSynth architecture

The development of the toolkit, unfortunately, is still in an initial
phase, however it already provides a minimal series of modules that
can be easily used to create and process sounds. At the beginning
of the project, in fact, after the first phases of software development
we decided to move the attention to the design and the construction
of hardware devices to be used in combination with the toolkit. The
modules currently available can be classified into three distinct cat-
egories (Signal generators, Filters, Envelope generators) which will
be presented in detail below.

2.1.1. Signal generators

PDSynth currently offers five sound generation modules that emulate
the behavior of classic analog synth oscillators. The modules offer
the possibility of generating the following waveforms:

GENPULSE — band-limited pulse train generator;

GENSAWTOOTH — band-limited saw tooth wave generator;

GENSIN — sine wave generator;

GENSQUARE — band-limited square wave generator;

GENTRIANGLE — band-limited triangle wave generator.

The GENSIN module uses the Pure Data native object osc~ for
generating the sine wave. All other modules are based on reading
data saved in tables (Wave Table Synthesis) [10].

The image in Figure 1 shows the patch of the GENPULSE mod-
ule. The sound is generated by using the Pd object tabosc4~. It
allows to read the data saved in a table using a polynomial interpo-
lation of the third order (four points interpolation). The objects that
manage the OSC messages are placed in the top right corner of the
patch. The first object (r OSCMessages) is used to receive OSC
messages sent in "broadcast" within Pure Data’s native message in-
frastructure. The following object (routeOSC /$1) selects and
sends on its leftmost outlet only the messages that have as the first
tag of the address the name of the module. This can be defined dur-
ing the creation of a new instance of the GENPULSE through the first
argument of the patch (for example Pulse1 in the upper part of the

patch in Figure 1). The next routeOSC object allows to route prop-
erly the data related to the various parameters to its different outlets
accordingto the OSC name address (/Freq — frequency, /Amp —
amplitude, ...).

Figure 1: GENPULSE - patch of the pulse train generator.

The toolkit is based on digital sound generation techniques, so
there is no real difference between audio band signal generators and
LFO (Low Frequency Oscillator). Therefore, all generators can be
used both in a frequency range below the threshold of audibility, as
is typical for LFOs, and to produce audible sounds. For this rea-
son, to achieve the generation of different waveforms we tried to
make a compromise between the problems related to aliasing and
the creation of signals with a frequency spectrum as wide as possi-
ble. After some initial experiments aimed at evaluating different ap-
proaches, we finally chose to generate band-limited signals by read-
ing the waveform data stored in different tables. In order to be able
to produce spectra that are very rich in harmonics, we decided to di-
vide the audible frequency spectrum into eight distinct regions, each
corresponding to a table containing the waveform with a suitably cal-
culated harmonic frequency content to avoid aliasing phenomena.

The image in Figure 2 shows the subpatch of the GENPULSE mod-
ule in which the eight tables are defined. Each table is related to a
different region of the frequency spectrum: $0-Table1 contains
a waveform made of 511 partials that is used at the low end of the
spectrum. While, at the opposite, $0-Table8 contains a wave-
form generated using only three partials which is used to generate
the sound in the upper part of the frequency spectrum.

All the signal generators, except the sinusoidal oscillator, use
this approach based on the reading of eight tables with waveforms
characterized by a different bandwidth. The change of the frequency
parameter determines the selection of the appropriate table to be used
for reading. The image in Figure 3 shows the setTable subpatch.
It receives as input the frequency value in Hz and, by means of the
conditional structure if contained in the object expr, it controls
which is the table to be read according to the interval of frequencies
in which the oscillator is called to operate.

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 2: GENPULSE — eight tables used for WaveTable synthesis.

Figure 3: GENPULSE — the setTable subpatch.

The content of the wavetables shown in Figure 2 can be gener-
ated by using the Pd command cosinesum that allows to create
a wave according to a sum of cosines harmonics (sinesum is the
command in Pd to realize the sum of sine waves). The image in
Figure 4 shows five subpatches used to create as many wavetables,
each with its own number of partials (ie. WriteTable8 — three
partials, WriteTable6 — fifteen partials, ...). The number placed
after the cosinesum command define the length of the table to be
generated expressed in number of points. In the image it is possi-
ble to notice that the number of points in the tables varies with the
number of partials. In fact, as reported in the Pure Data manual, it
is better to use tables composed of 512 points for waveforms con-
taining up to fifteen partial. Above this threshold it is convenient
to calculate the length of the table L as the number, power of two,
greater than the product shown in equation 1, where Np indicates the
number of partial

L > 32 ∗Np. (1)

For example, to generate $0-Table1 containing 511 partial
we need to use 16384 points. To calculate the frequency values to
be used for changing the table to be read as a function of the fre-
quency value, it is possible to observe that from the previous relation
the maximum number of partials can be obtained according to the
size of the table. This value can be calculated by inverting the previ-
ous relationship and subtracting one as a safety margin as shown in
equation 2:

Np =
L

32
− 1. (2)

Once this value is known it is possible to obtain the maximum repro-
ducible frequency through the equation 3:

fmax =
20000

Np
(3)

it was decided to use the frequency of 20000Hz (with respect to the
theoretical value of the Nyquist frequency equal to 22050Hz for the
standard sampling frequency of 44100Hz) as an additional safety
margin with respect to the occurrence of aliasing phenomena. Re-
turning to the example of $0-Table1, we obtain therefore:

fmax1 = 20000/511 = 39, 1 (4)

as it is visible in the image in figure 3 the first table is changed for a
frequency equal to 40 Hz. This same procedure has also been applied
for the calculation of all the other values defined to realize the change
of the table to be read using the object tabosc4~.

The pulse waveform can be generated with a series of cosines
in which all the partials have a uniform amplitude distribution. The
value of the amplitude an can be computed according to equation 5,
where N is the maximum number of partials [11].

an =
1

N
. (5)

As shown in Figure 4, the command cosinesum is followed by the
number of points of the table and by a list of numbers that defines the
amplitude factor of each partial. In the case of the pulse waveform,
this numbers are all the same and equal to the inverse of the number

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 4: GENPULSE — commands to create five wavetables.

of partials. Creating this lists of amplitude coefficients for all the
different waveforms is a long and repetitive process not so easy to
do by hand. This is even more true, when it is needed to generate
a very large number of partials as in the case of $0-Table1, as
shown in the top right corner of Figure 2.

For this reason a Python script has been developed in order to
automate the creation of a text file containing the list of amplitude
coefficients. The script created for the pulse generator is shown be-
low. In the first line, inside the open function, it is necessary to
define the name of the text file where data will be stored. On the
next line, the MaxOrder parameter defines the maximum number
of partials to be generated. The content of the text files generated
by this script can be easily copied and pasted into the Pure Data
messages (see figure 4) used to populate the tables with the various
waveforms.

out_file=open("Coef-Pulse.txt","w")
MaxOrder=511
x=round((1./MaxOrder),6)
out_file.write(str(0)+" ")
#The DC component is equal to 0
for i in range(1,MaxOrder+1):

out_file.write(str(x)+" ")
out_file.close()

2.1.2. Filters and sound processing

In addition to sound generation modules, PDSynth provides also
patches implementing filters. So far, three different filters of the
fourth order have been created:

FLTBandPass – band pass filter based on the Pd object vcf~;

FLTHighPass – high pass filter based on the Pd object hip~;

FLTLowPass – low pass filter based on the Pd object lop~.

Figure 5 shows an example based on the FLTBandPass mod-
ule. The patch realizes a small bank of filters, composed of three
modules placed in parallel, used to filter white noise. Each filter is
identified through a different OSC namespaces (BP1, BP2, BP3).

Figure 5: Example patch of the FLTBandPass module.

The structure of the filters patches is analogous to those of the
generators with regard to the internal management of OSC messages.
The filters differ from the generators only because of the presence of
an audio inlet used to provide the input signal to be processed.

2.1.3. Envelope generators

Two modules were also developed to generate envelopes:

ENVTable — envelope generator defined through a table;

ENVADSR4 — ADSR type envelope generator with fourth order
polynomial interpolation.

The ENVTable module allows you to generate a time envelope
by reading data contained in a table. Python scripts have been created
for the generation of envelope tables with different temporal trends.
The image in Figure 6 shows different two traits (attack and release)
envelopes generated by Python.

The ENVADSR4 module, instead, realizes a four-state ADSR
envelope with fourth order polynomial interpolation. As shown by

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 6: Two piece polynomial envelope.

Puckette [10] this type of interpolation allows to obtain a trend very
similar to the logarithmic one, but with a reduced computational cost
and a greater simplicity of implementation. As is known, the loga-
rithm function diverges towards less infinite when the argument is
approaching towards zero, which makes serious precautions neces-
sary in the realization of logarithmic envelopes through truncation
or approximation processes. On the contrary, the use of polynomial
interpolation eliminates this problem by also offering the possibil-
ity of modifying the slope of the curves in a very simple manner by
varying only the order of the polynomial used.

2.2. PDSynth-00

Starting from the initial idea to develop an exclusively software en-
vironment, we tried to use DIY controllers based on the Arduino
prototyping platform to control the modules of the toolkit. This first
experiments encuraged to broaden the vision of the toolkit by in-
corporating, therefore, both software development and the design of
hardware devices to control the software architectures. The intent
of the project has therefore been transformed into the creation of an
environment for prototyping and developing portable electronic mu-
sical instruments and synthesizers.

On the hardware side, the project was oriented towards the re-
alization of physical devices, equipped with potentiometers, sensors
and other interaction systems. PDSynth-00 (see Figures 7 and 8) is
the first DIY prototype of a controller made by Artis Lab, in Spring
2016, that is born from the idea of an hardware device useful to con-
trol the synthesis and sound processing architectures created with the
PDSynth toolkit.

Figure 7: Rear panel of PDSynth-00.

PDSynth-00 is a reprogrammable electronic musical instrument
that can perform different functions depending on the software that

is loaded into the Arduino board. It is equipped with six slide po-
tentiometers and twelve buttons. Everything is contained in a simple
and light container made of plywood shaped using a laser cutting
machine.

Figure 8: Top view of PDSynth-00.

PDSynth-00 can be interfaced with Pure Data through the Fir-
mata protocol. By this way the data relating to the position of the
six cursors and the status of the buttons can be sent to the program
listening on the serial port and used to perform action or modify pa-
rameters inside the PDSynth patches.

3. SYNTHBERRY PI

SynthBerry Pi was born as a natural evolution of the PDSynth-00.
The Arduino prototype is not autonomous, it is only useful for con-
trolling the PDSynth modules running on a computer. SynthBerry
Pi, enstead, integrates controller and computer through the use of
a Raspberry Pi mini computer allowing to create an autonomous de-
vice able to generate sound that can be modified via a control surface.

3.1. The control surface

SynthBerry Pi is equipped with an hardware control interface con-
sisting of eight slide potentiometers. The prototype was built, like
the previous one, using two panels of plywood shaped with a laser
cutting machine. Figure 9 shows the front view of the prototype.

Figure 9: The front view of SynthBerry Pi.

The slide potentiometers are mounted on the front panel of the
device, the assembly between the two panels of the prototype was

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

carried out through hexagonal steel spacers of suitable length. The
image in Figure 10 shows the top view of the prototype.

Figure 10: Top view of the prototype.

3.1.1. Hardware set up

Raspberry Pi is not equipped with analog to digital converters (ADC)
allowing the connections of potentiometers. For this reason, the ana-
log to digital converters MCP3008 was used to read the voltages re-
lated to the positions of the slide potentiometers. The MCP3008 is an
integrated circuit that provides eight analog input channels with 10
bit digital resolution. Figure 11 shows the simulation of connections
among the various components using a breadboard, while Figure 12
shows the circuit schematic. For simplicity, only one potentiometer
has been inserted since all the others must be connected in a similar
way to the ADC inputs.

Figure 11: Simulation of connections using a breadboard.

The communication between Raspberry and the ADC is based
on the SPI (Serial Peripheral Interface) serial communication proto-
col. SPI is a communication system between a microcontroller and
other integrated circuits or between multiple microcontrollers. It is
a communication standard, created by Motorola, in which the trans-
mission takes place between a control device (called master) and one
or more controlled devices (called slave). The master device controls
the communication bus, emits the clock signal and decides when to
start and end communication.

Figure 12: Circuit schematic.

The SPI communication system is commonly defined as four-
wire, since for the transmission of data four distinct signals are gen-
erally used:

• SCK: Serial Clock (emitted from the master)

• MISO: Serial Data Input, Master Input Slave Output

• MOSI: Serial Data Output, Master Output Slave Input

• CS: Chip Select, Slave Select (issued by the master to choose
which slave device to communicate with).

Chip Select is the only connection that is not always necessary
in all applications since its just needed to manage multiple slave de-
vices. A connection that defines the reference level of the voltage,
often referred to as GND, must be added to these four wires.

3.1.2. Software set up

The reading of the data acquired by the ADC is realized through
a Python script, which uses the SPIDEV library for the manage-
ment of SPI devices. The following code shows a fragment of the
Python script with the commands necessary to open the communi-
cation with the ADC and to perform a reading of the data through
the ReadChannel() function. The spi.xfer2() function is
invoked, inside ReadChannel(), to request the ADC to read the
voltage value of a given channel.

#Open SPI bus
spi=spidev.SpiDev()
spi.open(0,0)
spi.max_speed_hz=1000000
#Function to read SPI data from MCP3008 chip
#Channel must be an integer 0-7
def ReadChannel(channel):
adc=spi.xfer2([1,(8+channel)<<4,0])
data=((adc[1]&3)<<8)+adc[2]
return data

The transfer of the data read by the analog to digital converter,
between the Python script and Pure Data, is achieved sending, on a
specific port, local network messages. For this purpose we use the
pdsend program provided within the standard Pd package, used as

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

a sub-process within the Python script. The following code shows
the creation of the subprocess p which invokes the pdsend
program used to send data on port 9000 of the local computer. The
send2Pd() function is used to send messages through pdsend.
The last line shows the use of the send2Pd() function that take
as argument a string composed by the concatenation of two numeric
values: the first to define the channel of potentiometer and the second
to provide the ADC reading.

#Create a subprocess to send data to Pd
p=subprocess.Popen(["pdsend","9000"],

stdin=subprocess.PIPE)
#Define the function to send data to Pd
def send2Pd (message=’ ’):
print >> p.stdin, message

#How to use the function to send data to Pd
send2Pd(’0’+str(pot_Volts0)+’;’)

A simple protocol was designed to send messages from Python
to Pure Data keeping the data of the different potentiometers separate
and easily differentiable. A list of two numbers is sent, the first is a
label (from 0 to 7) useful for identifying the potentiometer, the sec-
ond number is the numeric data obtained from the reading made by
the digital converter. To receive data in Pure Data the netreceive
object is used which opens a server listening on the port correspond-
ing to that used by pdsend. The expedient used in the construction
of the message sent by Python simplifies the sorting of data that can
be easily accomplished through the native object of Pd route.

The data acquired by the ADC are filtered to reduce random
fluctuations due to noise through the use of an average filter that
generates an average output value every ten converter readings. The
following code shows the simplified structure for reading and trans-
mitting data of a single potentiometer. Within an infinite cycle, the
Count counter is incremented and the values supplied by the ADC
are read, divided by 1023 (to obtain numbers between 0 and 1) and
accumulated on the readPot0 variable. Every ten readings the
readPot0 variable is divided by ten, obtaining the average value.
If the new value has undergone a variation compared to the previ-
ous one greater than 0.5%, the value of the pot_Volts0 variable
is updated. The value of this variable is then sent to Pd through the
send2Pd function. After that the values of the counter and the ac-
comulation variable are both reset to zero and the program execution
is suspended for a time defined by the delay variable.4

while True:
readPot0+=ReadChannel(pot0_channel)/float

(1023)
Count+=1
if Count==10:
readPot0=0.1*readPot0
if abs(pot_Volts0-readPot0)>0.005:

pot_Volts0=readPot0

send2Pd(’0’+str(pot_Volts0)+’;’)
readPot0=0
Count=0

Wait before repeating loop
time.sleep(delay)

4In this way, using a value equal to 0.01s for the variable delay, the
reading is made every 10ms and a new value is sent to Pure Data every
100ms.

A script was created to start both Pure Data and the Python pro-
gram to manage the ADC. Since we want to use the prototype as a
common electronic instrument through the use of only the control
surface we have chosen to use the Raspberry Pi headless without the
connection of screen, mouse and keyboard. For this purpose, the
script must be started automatically during the startup phase of the
Raspberry Pi. To do this, a special service, launching the start script,
has been created and set up to be started automatically during the
initial phases of execution of the operating system.

3.2. The audio engine

The audio engine of the prototype is based on the use of a modified
version of the first PDSynth sample patch. The patch offers the pos-
sibility to separately control the amplitude and the frequency of three
oscillators generating different waveforms (square wave, pulses train
and sawtooth wave). Furthermore, it provides a delay line with a
feedback path. The delay line can be controlled by two parameters
that can be modified in real time through the potentiometers of the
prototype control surface: the delay time and the feedback coeffi-
cient. The eight potentiometers of the prototype have been asso-
ciated to likewise control parameters of the patch according to the
following scheme:

• A0 - square wave oscillator frequency;

• A1 - amplitude of the square wave oscillator;

• A2 - pulse generator frequency;

• A3 - amplitude of the pulse generator;

• A4 - frequency of the sawtooth oscillator;

• A5 - amplitude of the sawtooth oscillator;

• A6 - delay time;

• A7 - delay feedback.

Figure 13: Pd patch of the audio engine.

Figure 13 shows the audio engine patch and the use of three sig-
nal generation modules. The modules are placed in the top left cor-
ner of the patch. The first argument of each object is a name that is
used as an identifier for addressing OSC messages (Square1, Pulse1,
Saw1). The second argument provided in the creation of the sound
generators (PDS-Outbus in the image) allows to define the name of
the bus on which the audio signals produced by the various genera-
tors will be accumulated. In this case, all the signals are collected by
the catch~ PDS-Outbus object and sent both to the delay patch

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

and to the sound card output through the dac~ object (in the lower
left part of the patch in Figure 13).

On the right side of the patch, the number boxes allow to change
the amplitude and the frequency of the various oscillators by sending
OSC messages through the send OSCMessages object. The im-
age shows also how to create the OSC message addresses to control
the parameters of the modules.

3.3. Eurorack Module

In autumn 2019 a new version of the prototype was created in the
form of a 18 hp eurorack module. The image in Figure 14 shows the
front view of the module.

Figure 14: The front view of the module.

Figure 15 shows the internal structure of the module. An hand-
crafted PCB board is connected on the GPIO pins of the Raspberry
Pi. The potentiometers are connected to the PCB where the ADC is
also housed. This second prototype made in the form of a Eurorack
module is completely analogous to the first prototype both in terms
of hardware and software.

4. CONCLUSIONS

In this work we have presented SynthBerry Pi an autonomous syn-
thesizer based on Raspberry Pi and Pure Data. The PDSynth toolkit
was used as audio engine of the prototype. This toolkit provides
a series of Pd patches that can be easily used as modules to create
high level architecture to generate and process sounds. To run the
PDSynth synthesis architectures a Raspberry Pi mini computer was
used; a control surface made up of eight slide potentiometers was
build to provide a suitable hardware device to play the instrument
controlling in real time the sound parameters.

SynthBerry Pi was used in several live performances and also in
studio recordings. In future work we intend to add a second ADC to
the prototype to have eight more input channels useful for implement
the control voltage (CV) of the synth parameters. Furthermore, we
intend to create a more intuitive and powerfull control surface by
also adding buttons, LEDs and rotary encoders.

Figure 15: The internal structure of the module.

5. REFERENCES

[1] J. Noble, Programming Interactivity. A Designer’s Guide
to Processing, Arduino and openFrameworks, OReilly, Se-
bastopol, CA, 2009.

[2] R. Wilson, Make: Analog Synthesizers, Maker Media, Se-
bastopol, CA, 2013.

[3] J. Reuter, “Case study: Building an out of the box Raspberry
Pi modular synthesizer,” in Proceedings of Linux Audio Con-
ference (LAC14). Karlsruhe, 2014.

[4] F. Meier, M. Fink, and U. Zölzer, “The JamBerry - a stand-
alone device for networked music performance based on the
Raspberry Pi,” in Proceedings of Linux Audio Conference
(LAC14). Karlsruhe, 2014.

[5] V. Lazzarini, Timoney J., and Byrne S., “Embedded sound syn-
thesis,” in Proceedings of Linux Audio Conference (LAC15).
Mainz, 2015.

[6] H. von Coler and D. Runge, “Teaching sound synthesis in
C/C++ on the Raspberry Pi,” in Proceedings of Linux Audio
Conference (LAC17). Saint-Etienne, 2017.

[7] M. Puckette, “Pure Data,” in Proceedings of International
Computer Music Conference (ICMC97), pp. 224–227. Thessa-
loniki, 1997.

[8] M. Wright, A. Freed, and A. Momeni, “Open Sound Control:
State of the art 2003,” in Proc. of the 2003 Conference on
New Interfaces for Musical Expression (NIME-03), pp. 153–
159. Montreal, 2003.

[9] M. Wright, “Open Sound Control: an enabling technology
for musical networking,” Organised Sound, vol. 10, no. 3, pp.
193–200, 2005.

[10] M. Puckette, The Theory and Technique of Electronic Music,
World Scientific, 2007.

[11] C. Dodge and T. A. Jerse, Computer Music, Schirmer, New
York, 1997.

	1 Introduction
	2 PDSynth
	2.1 PDSynth architecture
	2.1.1 Signal generators
	2.1.2 Filters and sound processing
	2.1.3 Envelope generators

	2.2 PDSynth-00

	3 Synthberry Pi
	3.1 The control surface
	3.1.1 Hardware set up
	3.1.2 Software set up

	3.2 The audio engine
	3.3 Eurorack Module

	4 Conclusions
	5 References

