
Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

PIPEWIRE: A LOW-LEVEL MULTIMEDIA SUBSYSTEM

Wim Taymans ∗

Principal Software Engineer
Red Hat, Spain

wim.taymans@gmail.com

ABSTRACT

PipeWire is a low-level multimedia library and daemon that facili-
tates negotiation and low-latency transport of multimedia content be-
tween applications, filters and devices. It is built using modern Linux
infrastructure and has both performance and security as its core de-
sign guidelines. The goal is to provide services such as JACK and
PulseAudio on top of this common infrastructure. PipeWire is media
agnostic and supports arbitrary compressed and uncompressed for-
mats. A common audio infrastructure with backwards compatibility
that can support Pro Audio and Desktop Audio use cases can poten-
tially unify the currently fractured audio landscape on Linux desk-
tops and workstations and give users and developers a much better
audio experience.

1. INTRODUCTION

In recent years, a lot of effort has been put into improving the deliv-
ery method for applications on Linux. Both Flatpak [1] (backed by
Red Hat and others) and snappy [2] (backed by Canonical) aim to
improve application dependencies, delivery and security.

Due to the increased security policy of these sandboxed appli-
cations, no direct access to system devices is allowed. Access to
devices needs to be mediated by a portal and controlled by a dae-
mon.

Linux and other operating systems have traditionally used a dae-
mon to control audio devices. For consumer audio, the Linux desk-
top has settled around PulseAudio [3] and for Pro-Audio it has adop-
ted JACK [4].

The initial motivation for PipeWire [5] in 2017, came from a
desire to support camera capture in a sandboxed environment such as
Flatpak. PipeWire was initially conceived as a daemon to decouple
access from the camera and the application, not very different from
the existing audio daemons. Later on, the design solidified and with
input from the LAD community it went through a couple of rewrites
and gained audio functionality as well.

PipeWire provides a unified framework for accessing multime-
dia devices, implementing filters and sharing multimedia content be-
tween applications in an efficient and secure way. This framework
can be used to implement various services such as Camera access
from browsers, Screen sharing, audio server, etc.. The design al-
lows to run PulseAudio and JACK applications on top of a common
framework, essentially providing a way to unify the Linux Audio
stack.

This paper will focus on the Audio infrastructure that PipeWire
implements.

∗ This work was supported by Red Hat

2. LINUX AUDIO LANDSCAPE

Audio support on Linux first appeared with the Open Sound System
(OSS) [6] and was until the 2.4 kernel the only audio API available
on Linux. It was based around the standard Unix open/close/read-
/write/ioctl system calls.

OSS was replaced by the Advanced Linux Sound Architecture
(ALSA) [7]from Linux 2.5. ALSA improved on the OSS API and
included a user space library that abstracted many of the hardware
details. The ALSA user-space library also includes a plugin infras-
tructure that can be used to create new custom devices and plugins.
Unfortunately, the plugin system is quite static and requires editing
of configuration files.

OSS — and also ALSA — both suffer from the fact that only one
application can open a device at a time. Some hardware can solve
this by doing mixing in the audio card itself but most consumer cards
or even pro audio cards don’t have this functionality. ALSA imple-
ments a software mixer as a plugin (Dmix) but its implementation is
lacking and its setup inflexible.

2.1. First sound servers

EsoundD (or ESD) was one of the first sound servers. It was de-
veloped for Enlightenment and was later adopted by GNOME. It
received audio from multiple clients over a socket and mixed the
samples before writing to the hardware device. Backend modules
could be written for various sound APIs such as ALSA and OSS.

The first sound servers used TCP as a transport mechanism and
were not designed to provide low-latency audio. Applications were
supposed to send samples to the server at a reasonable speed with
some limited feedback about the fill levels in the server.

BSD has another audio API called sndio [8]. This is a very
simple audio API that can also handle midi. It is based on Unix pipes
to transport audio and has, like ESD, no real support for low-latency
audio.

2.2. Pro audio with JACK

The JACK Audio Connection Kit (JACK) was developed by Paul
Davis in 2002 based on the audio engine in Ardour. It provides real-
time and low-latency connections between applications for audio and
midi.

JACK maintains a graph of applications (clients) that are con-
nected using ports. In contrast to the previous audio servers, JACK
will use the device interrupt to wake up each client in the graph in
turn to process data. This makes it possible to keep the delay be-
tween processing and recording/playback very low.

There are 2 implementations of the JACK API with different
features. Work is ongoing to bring the JACK2 implementation to the
same level as JACK1, eventually rendering JACK1 obsolete.

https://redhat.com
mailto:wim.taymans@gmail.com

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

JACK is missing features that are typically needed for regular
desktop users such as format support, power saving, dynamic de-
vices, volume control, security etc.

2.3. Consumer audio with PulseAudio

PulseAudio is a modern modular sound server. In contrast to other
sound servers on Linux it handles the routing and setup of multiple
devices automatically and dynamically. One can connect a bluetooth
device and have the sound be routed to it automatically, for example.

It is possible to write rules into a policy module to perform vari-
ous tasks based on events in the system. One can for example, lower
or pause audio streams when an incoming call is received.

PulseAudio is optimized for power saving and does not handle
low-latency audio very well, the code paths to wake up a client are
in general too CPU hungry.

Most desktops nowadays install PulseAudio by default. And it is
possible to let PulseAudio and JACK somewhat coexist. PulseAudio
can automatically become a JACK client when needed although this
will cause high CPU load with low-latency JACK setups.

3. PIPEWIRE MEDIA SERVER

When designing the audio infrastructure for PipeWire we need to
build upon the lessons learned from JACK and PulseAudio. We
will present the current design and how each part improves upon
the JACK and PulseAudio design.

ALSA pipewire-pulse libjack.so

libpipewire

V4l2 alsabluetooth va-api DRM

GStreamer VLC App1 App2

App

JACK Wayland

Session
Manager

vulkan

Figure 1: Overview

Figure 1 shows where PipeWire is situated in the software stack.
It sits right between the user-space API to access the kernel drivers
and the applications. It takes on a similar role as PulseAudio or
JACK but also includes video devices, midi, Firewire and bluetooth.
It allows application to exchange media with each other or with de-
vices.

Applications are not supposed to directly access the devices but
go through the PipeWire API. There is a replacement JACK and
PulseAudio server that go through PipeWire to provide compatibility
with existing applications. There is no urgent reason to port applica-
tions to PipeWire unless they would want to use newer features that
cannot be implemented in the other APIs.

The core functionality of PipeWire is simple and consists of:

• Provide a set of core objects. This includes: Core, Client,
Device, Node, Port, Module, Factory, Link along with some
helper objects.

• Load modules to create factories, policy or other objects in
the PipeWire daemon or client.

• Allow clients to connect and enforce per client permissions
on objects.

• Allow clients to introspect objects in the daemon. This in-
cludes enumerating object properties.

• Allow clients to call methods on objects. New objects can be
created from a factory. This includes creating a link between
ports or creating client controlled objects.

• Manage the negotiation of formats and buffers between linked
ports.

• Manage the dataflow in the graph.

An important piece of the infrastructure is the session manager.
It includes all the specific configuration and policy for how the de-
vices will be managed in the PipeWire graph. It is expected that this
component will be use-case specific and that it will interface with
the configuration system of the environment. PipeWire provides a
modular example session manager and work is ongoing to create an
alternative session manager called WirePlumber [9].

In the next subsections we cover the various requirements and
how they are implemented in PipeWire.

3.1. IPC

A sound/media server needs to have an efficient and extensible IPC
mechanism between client and server. The PipeWire IPC (inter pro-
cess communication) system was inspired by Wayland [10]. It ex-
poses a set of objects that can have properties, methods and that can
emit events.

The protocol is completely asynchronous, this means that method
calls do not have a return value but will trigger one or more events
asynchronously later with a result. This also makes it possible to use
the protocol over a network without blocking the application.

PipeWire has a set of core built-in interfaces, such as Node, Port
and Link that can be mapped directly to JACK Client, Port and con-
nections. It is also possible to define new interfaces and implement
them into a module. This makes it possible to extend the number of
interfaces and evolve the API as time goes by.

Extensibility of the protocol has been lacking in JACK and to
some extend PulseAudio as well.

3.2. Configuration/Policy

Configuration of the Devices and nodes in the PipeWire daemon as
well as the routing should be performed by a separate module or even
an external session manager.

With PulseAudio, the setup and policy was loaded into the dae-
mon with modules and requires editing of configuration files to
change. Modules can also only be developed inside the PulseAu-
dio repository, which makes them very inflexible and not adaptable
to the specific desktop environment.

JACK has very limited setup, it can normally only load and con-
figure 1 hardware device for capture and playback. It is up to other
processes (session managers, control applications) to add extra de-
vices dynamically (netjack, zita-a2j, zita-n2j, ...).

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

PipeWire chooses the external session manager setup, like JACK
but makes it possible to choose what services to run in the daemon
and which in the session manager. Devices, for example, can run
inside the daemon for better performance or outside of the daemon
for more flexibility (Bluetooth devices need encoding/decoding that
is better run outside of the daemon).

The session manager can export any kind of device, including
Bluetooth, Firewire, ALSA, video4linux and so on.

3.3. Security

JACK and PulseAudio make it possible for clients to interfere with
other clients or even read and modify their data. PipeWire fixes this
problem with a permission system that is enforced at the PipeWire
core level.

When a client connects, it can be frozen until permissions are
configured on it. This is usually done by an access module when it
detects a sandboxed client. Usually a session manager will configure
permissions on a client based on its stored permissions or based on
user interaction.

PipeWire enforces that clients can’t see or interact with objects
for which they don’t have READ permission. Client can’t call meth-
ods on objects without EXECUTE permissions and WRITE permis-
sion is needed to change properties on an object.

It is also important that clients can only see the shared memory
they need. This is implemented in PipeWire by only handing memfd
file descriptors to clients that require the data. Seals are used to make
sure that clients can’t truncate or grow the memory in any way and
cause other clients or the daemon to crash.

3.4. Format negotiation

PipeWire uses the same format description as used in GStreamer
[11]. This allows it to express media formats with properties, ranges
and enumerations. It is possible to easily find a common format be-
tween ports by doing a generic intersection of formats.

Format conversion, however, is not something that should be
done often in a real-time, low-latency pipeline. It should typically
only be done when writing to or reading from the actual hardware.
The PipeWire audio processing graph uses a common single format
between all the processing nodes. The format is not hard-coded into
PipeWire but configured by the session manager and is currently the
same format as used by JACK: Float 32 bits mono samples.

PipeWire uses a generic control format to transport midi and
other control messages. This can include timed property updates,
OSC or CV values.

Flexible format negotiation is a requirement to implement fea-
tures like pass-through over HDMI or AAC decoding on the blue-
tooth devices. The session manager will usually define how this will
work, for example, pass-through will require exclusive access to the
device because mixing of encoded formats is not possible.

3.5. Dataflow

After a format is negotiated, PipeWire negotiates a set of buffers
backed by memory in memfd. These buffers are then shared be-
tween nodes and ports that need them by passing the file descriptor
around. eventfd is used to wakeup nodes when they need to pro-
cess input buffers and produce output buffers.

timerfd is used to measure when a devices will be empty/-
filled. The timeout is adjusted based on the fill level of the device

and a DLL. By using a timer, we can also dynamically adjust the
period size based on client requirements. It is also possible to write
the device wakeup using the traditional IRQ based approach but that
does not provide flexible period adjustments.

When a device needs more data (or has more data, in case of a
source), the graph is woken up. PipeWire uses the same concepts as
JACK2 to schedule the processing graph. It keeps track of depen-
dencies between nodes and nodes are informed about the peer nodes
they are linked to. When processing starts, all nodes without depen-
dencies are scheduled (sources). When they complete, dependencies
are satisfied on their peer nodes, which are then scheduled, and so
on until the whole graph is completed. Nodes that complete can di-
rectly wake up their peers by signaling the eventfdwithout having
to wake up the PipeWire daemon.

This allows for the same latency and complexity as JACK and
significantly better performance than PulseAudio.

3.6. Automatic slaving

PipeWire will automatically manage the master/slave relationship
between devices. For this it uses a priority property configured on
the device node by the session manager.

Devices are only slaved to each other when their graphs are inter-
connected in some way. This is an improvement compared to JACK,
which requires all devices to be slaved to one master, even if they
don’t need to be. It allows PipeWire to avoid resampling in many
cases.

The clock slaving and resampling algorithm is inspired by zita-
ajbridge [12]. It however runs in a single thread and uses a DLL
to drive the resampler by matching its device fill level to the graph
period size. This results in exceptionally good rate matching, far
superior to what PulseAudio manages and with lower latency than
what zita-ajbridge does.

3.7. Transport

PipeWire expands on the JACK transport feature with the following
additions:

• multiple transports at the same time. Each driver has its own
transport, when drivers are slaved, the transport of the master
becomes the active one. This makes it possible to avoid slav-
ing and resampling when the driver graphs are not linked in
any way.

• Seeking is supported in other formats than audio samples.
Seeking in beats or bars is possible.

• Clients can know about new position changes in advance.
There is a queue of pending position changes that clients can
look at.

• Sample accurate looping.

4. SESSION MANAGER

The PipeWire daemon is usually configured to start up with a mini-
mal set of modules. All devices and policy are typically loaded and
configured by an external session manager. This usually include a
factory for devices and a factory for making links.

PipeWire includes a modular example session manager that can
be used as a basis for a custom session manager.

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

The session manage usually also implement the session manager
extension API that introduces concepts of Session/Endpoint/End-
pointStream and EndpointLink. These interfaces are used to group
and configure nodes in the graph and allows PipeWire/SessionMan-
ager to provide similar concepts to what PulseAudio uses.

5. API SUPPORT

Legacy application should run unmodified on a PipeWire system.
Depending on the API, a plugin or a replacement library is used for
this purpose.

5.1. ALSA

There is an ALSA plugin that interfaces directly with PipeWire to
support older ALSA-only applications. See Figure-3 for an example
of aplay streaming to PipeWire.

5.2. PulseAudio

PulseAudio support was initially implemented with a reimplementa-
tion of libpulse.so and some other pulse libraries that interfaces
with PipeWire directly. This however proved to be more complicated
and error prone than expected.

The lastest PipeWire version implements PulseAudio support
with a minimal reimplementation of the PulseAudio protocol in a
separate daemon. This provides excellent compatibility even for
Flatpak applications and turns out to be considerably less compli-
cated to implement.

See Figure 2 for a screenshot of pavucontrol running on top
of the PipeWire PulseAudio replacement daemon.

Figure 2: pavucontrol on PipeWire

5.3. JACK

JACK is supported with a custom libjack.so library that maps
all jack method calls to equivalent PipeWire methods. See Figure-3
for an example of catia running on top of the PipeWire libjack.so
replacement. The figure also shows how VLC (using the PulseAudio
API), aplay (using the ALSA plugin) and paplay (using the PulseAu-
dio API) can coexist with JACK applications.

Figure 3: Catia on PipeWire

6. USE CASES

In addition to the audio use case that we covered in the previous
section, in this section we briefly touch upon the other use cases that
PipeWire handles.

6.1. Camera access

In sandboxed applications, it is not allowed to directly access the
video camera. Browsers provide a custom dialog to mediate access
to cameras but this task would be better handled by the lower lay-
ers in order to have a unified access control mechanism but also a
common video processing graph.

PipeWire can provide a video4linux source that applications can
use to capture video from the camera. This has many benefits such
as:

• Access can be controlled by PipeWire. Revoking access is
easy.

• Resolutions and format are managed by the session manager.
Based on the profile and requirements of the apps using the
camera.

• Filters can be applied.

• The camera can be shared between applications.

GNOME has created a portal DBus API [13] to negotiate ac-
cess with the camera (what camera to use) and create a session with
limited permissions for this stream.

Figure-4 shows Cheese and a GStreamer pipeline sharing the
captured video of a video4linux camera served through PipeWire.

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

Figure 4: Camera access and sharing

6.2. Screen sharing

Under Wayland, it is for security reasons not possible to grab the
contents of the screen. This makes it impossible to implement screen
sharing or remote desktop on top of Wayland without some extra
work.

GNOME has implemented a portal (DBus API) that can be used
to request a PipeWire stream of the desktop. The portal will ask
the user what kind of screen sharing to activate (windows, area or
whole desktop along with what monitor etc) and will then set up a
PipeWire session with the stream. The fd of the session is passed to
the application. Using the PipeWire security model, only this stream
is visible to the application and data can flow between the compos-
itor and the application. See Figure-5 to see a GStreamer pipeline
rendering the captured screen of a Wayland session.

Figure 5: Wayland screen sharing

6.3. Video processing

Some effort has been put into the Video processing part of PipeWire.
Currently there is a Vulkan compute source that can generate video
in RGBA float 32 linear light format. We expect video filters to be
made at a later stage, enabling the same kind of features JACK gives
but on video streams.

6.4. Adoption

PipeWire has been in Fedora 27 since 2017 to implement Wayland
screen sharing. FireFox, Chrome (WebRTC) have support to imple-
ment the screen sharing with native PipeWire API using the DBus
portal.

Since Fedora 32 (early 2020), the redesigned version 3 with au-
dio support has been shipped but not enabled by default.

On September 4th 2020 [14], a tech preview can be enabled in
Fedora 32 and Fedora 33 to test out the audio functionality. This
resulted in quite a few new features and bugfixes reported by early
testers.

Currently, a plan is developing to try to enable PipeWire as the
default Audio service in Fedora 34 (april 2021) and to phase out
PulseAudio and JACK.

7. CONCLUSIONS

We showed how PipeWire provides a performant and secure multi-
media subsystem in Linux. With lessons learned from existing con-
sumer and pro audio solutions, PipeWire unifies the audio stack and
provides a future proof foundation for all kinds of new exciting mul-
timedia applications.

Future work will involve deploying PipeWire in distros and learn-
ing how to improve the design. More research and experience is
needed for writing the session manager and how this will integrate
with the desktop configuration.

More work is being done on experimenting with scripting lan-
guages to define the policy and routing in a flexible and reusable
way.

8. ACKNOWLEDGEMENTS

Many thanks to the LAD community (and in particular Robin Gareus,
Paul Davis, Len Ovens and Filipe Coelho) for letting me pick their
brains and putting me on the right track.

Many thanks to my employer Red Hat, who sponsored the de-
velopment of PipeWire.

9. REFERENCES

[1] Flatpak Comunity, “Flatpak,” https://github.com/
flatpak/flatpak.

[2] Canonical, “Snappy,” https://snapcraft.io.

[3] Lennart Poettering et al., “Pulseaudio,” https://
pulseaudio.org/.

[4] Paul Davis, “Jack audio connection kit,” http://
jackaudio.org/, 2002.

[5] Wim Taymans, “Pipewire - multimedia processing,” https:
//pipewire.org, 2017, [Online].

[6] Hannu Savolainen, “Open sound system,” http://www.
opensound.com.

[7] Jaroslav Kysela, “Advanced linux sound architecture,” http:
//alsa-project.org, 1998.

[8] Alexandre Ratchov and Jacob Meuser, “sndio: Openbsd sound
system,” http://www.sndio.org, 2008.

https://github.com/flatpak/flatpak
https://github.com/flatpak/flatpak
https://snapcraft.io
https://pulseaudio.org/
https://pulseaudio.org/
http://jackaudio.org/
http://jackaudio.org/
https://pipewire.org
https://pipewire.org
http://www.opensound.com
http://www.opensound.com
http://alsa-project.org
http://alsa-project.org
http://www.sndio.org

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, November 25–27, 2020

[9] George Kiagiadakis and Julian Bouzas, “Wireplumber -
session / policy manager implementation for pipewire,”
https://gitlab.freedesktop.org/pipewire/
pipewire.

[10] Kristian Høgsberg, “Wayland,” https://wayland.
freedesktop.org/.

[11] The GStreamer Comunity, “Gstreamer api documenta-
tion,” https://gstreamer.freedesktop.org/
documentation/gstreamer/.

[12] Fons Adriaensen, “Zita-ajbridge,” http://
kokkinizita.linuxaudio.org/linuxaudio/
zita-ajbridge-doc/quickguide.html, 2012.

[13] Freedesktop Comunity, “A portal frontend service
for flatpak,” https://github.com/flatpak/
xdg-desktop-portal, 2016.

[14] Christian F.K. Schaller, “Pipewire late summer update 2020,”
https://blogs.gnome.org/uraeus/2020/09/
04/pipewire-late-summer-update-2020/, 2020.

[15] PipeWire comunity, “Pipewire - gitlab freedesktop,”
https://gitlab.freedesktop.org/pipewire/
pipewire.

https://gitlab.freedesktop.org/pipewire/pipewire
https://gitlab.freedesktop.org/pipewire/pipewire
https://wayland.freedesktop.org/
https://wayland.freedesktop.org/
https://gstreamer.freedesktop.org/documentation/gstreamer/
https://gstreamer.freedesktop.org/documentation/gstreamer/
http://kokkinizita.linuxaudio.org/linuxaudio/zita-ajbridge-doc/quickguide.html
http://kokkinizita.linuxaudio.org/linuxaudio/zita-ajbridge-doc/quickguide.html
http://kokkinizita.linuxaudio.org/linuxaudio/zita-ajbridge-doc/quickguide.html
https://github.com/flatpak/xdg-desktop-portal
https://github.com/flatpak/xdg-desktop-portal
https://blogs.gnome.org/uraeus/2020/09/04/pipewire-late-summer-update-2020/
https://blogs.gnome.org/uraeus/2020/09/04/pipewire-late-summer-update-2020/
https://gitlab.freedesktop.org/pipewire/pipewire
https://gitlab.freedesktop.org/pipewire/pipewire

	1 Introduction
	2 Linux Audio Landscape
	2.1 First sound servers
	2.2 Pro audio with JACK
	2.3 Consumer audio with PulseAudio

	3 PipeWire media server
	3.1 IPC
	3.2 Configuration/Policy
	3.3 Security
	3.4 Format negotiation
	3.5 Dataflow
	3.6 Automatic slaving
	3.7 Transport

	4 Session manager
	5 API support
	5.1 ALSA
	5.2 PulseAudio
	5.3 JACK

	6 Use Cases
	6.1 Camera access
	6.2 Screen sharing
	6.3 Video processing
	6.4 Adoption

	7 Conclusions
	8 Acknowledgements
	9 References

