
Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

EXPRESS DATA PATH KERNEL OBJECTS FOR REAL-TIME AUDIO STREAMING
OPTIMIZATION

Christoph Kuhr

Brühl, Germany
christoph.kuhr@web.de

Alexander Carôt

Anhalt University of Applied Sciences
Köthen, Germany

alexander.carot@hs-anhalt.de

ABSTRACT

Using a JACK media clock listener to synchronize JACK to an AVTP
media clock talker results in performance issues when used with a
raw Ethernet socket under Linux. The packet rate of a class A AVTP
audio stream of 8 kHz triggers too many interrupts in the CPU. As
a result a JACK audio cycle has only 125 µsec to process the au-
dio data of all JACK clients. This restriction prevents such a system
from real-time signal processing. The extended Berkley Packet Fil-
ter in combination with the express data path kernel features, that are
integrated in the Linux kernel since version 4.8, are investigated. We
could optimize the media clock synchronization by using a eBPF
XDP program for pre processing of the stream packets. Our de-
scribed solution is meant as an alternative to the usage of generic
raw sockets.

1. INRODUCTION

Soundjack [1] is a real-time communication software using peer to
peer connections, to connect up to five participants with each other.
The targeted user group consists mostly of musicians. It was first
published in 2006 [2]. The interaction with live music over the pub-
lic Internet is very sensitive to latencies, both round trip as well as
one-way. A rehearsal environment for conducted orchestras via the
public Internet is the the ultimate goal for this research. Up to 60
musicians and a conductor shall be able to play together live.

Signal processing requirements make a server network manda-
tory, that connects up to 60 UDP streams to each other and mixes
them. A single optimized processing server could handle the process
of mixing this amount of concurrent UDP streams with reasonably
low latency. Future research, however, shall investigate the applica-
tion of immersive audio technologies in real-time. A single server
would not be able to handle such computational load, since any fil-
ter calculation has to be done more than 60 times. Thus, a scalable
server network provides the required processing power for a sub-
set of the streams. The audio signals are routed between the signal
processing applications via JACK [3]. JACK is a professional and
open source audio server, that allows applications to share sample
accurate audio data with each other. The servers need to share the
processed audio data amongst each and have to be synchronized in
time. For this purpose the AVB technology defined by IEEE stan-
dards (IEEE 802.1AS, 802.1Qat, 802.1Qav and 1722) is used. The
AVB standards extend generic Ethernet networks with precise time
synchronization, network resource reservation and bandwidth shap-
ing. These properties avoid the Soundjack client streams from inter-
fering with each other and also ensures the sample accurate synchro-
nization of audio data across multiple servers.

This media clock synchronization of the multiple JACK instances
on all servers, with the JACK AVB media clock listener (avb-mcl)

backend was presented in [4]. Further investigations have shown
that JACK is not able to keep the media clock in sync, if the local
processing demand rises to the intended amount. The reason for this
is the asynchronicity between the AVB AVTP packet rate for stream
reservation class A traffic with a transmission interval of 125 µsec.
At a sampling rate of 48 kHz, each AVTP packet contains 6 audio
samples. The JACK sample buffer, however, always has a size of the
power of 2 (e.g. 26 = 64 samples), which 6 is not. Thus, with any
sample buffer setting, multiple AVTP packets have to be received in
a single JACK audio cycle. With 64 samples 11 AVTP packets are
required. This means, that for any one of the eleven AVTP packets,
the kernel has to allocate meta data and switch the process context to
call the user space application. A JACK audio cycle for 64 samples,
which requires 1.3334 msec at 48 kHz to complete, is therefore
interrupted any 125 µsec. But the situation is even worse, since the
design of avb-mcl blocks until the next arrival of an AVTP packet.
Consequently, it blocks 10 times and only leaves 125 µsec for the
processing of an audio cycle overall. This is exactly the duration
between the arrival of the 11th packet and the deadline of the au-
dio cycle. This makes it nearly impossible to deploy avb-mcl in a
productive environment.

A common solution to this problem is the outsourcing of the
packet reception into a different thread. However, this would require
synchronization of the threads and would introduce latency by lock-
ing or busy waiting. The achievement of the lowest possible kernel
latency for this desired behavior with classical methods, would re-
quire to write a specific kernel module. This is a difficult task due to
several reasons. Another possible solution has found its way into the
Linux kernel in 2016, which we will explore in this paper: eXpress
data path (XDP).

1.0.1. extended Berkley Packet Filters and eXpress Data Paths

Network traffic nowadays may easily require bandwidths,
e.g. 100 Gbps, of a computer system’s data bus and CPU that a
generic software stack is unable to handle. Thus, it makes it hard
to process packets within a reasonable reaction time. The reason for
this limitation can be found in the allocation of meta data for billions
of packets per second by the kernel. Not every packet, however, re-
quires handling by the software stack. Use cases exist, that can be
significantly sped up by preprocessing of packets inside the kernel.
For most software developers this meant to write their own kernel
modules, which is a very delicate and complex process. Three differ-
ent strategies to accelerate and optimize network packet processing
on a Linux computer exist:

• Kernel Bypassing
• Customized Kernel Module
• extended Berkley Packet Filter (eBPF) with eXpress Data Path

(XDP)

mailto:christoph.kuhr@web.de
http://www.hs-anhalt.de
mailto:alexander.carot@hs-anhalt.de

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

Kernel Bypassing disables all features of the kernel. Several
techniques exist that can be used for kernel bypassing. All of which,
however, require dedicated network adapters. A customized kernel
module requires a significant development effort. The source code
of kernel modules for network adapters easily contains tens of thou-
sands of lines of code, that are carefully tuned. Adding even small
features may create unforseen development and debugging effort.
Therefore, these two strategies are not further discussed in this paper.

In 2014, the well known Berkley Packet Filter (BPF) kernel fa-
cility, to filter network packets in the kernel-space, has been
rewritten and extended [5]. An extended Berkley Packet
Filter (eBPF) [6] [7] program is a small snippet of code that is com-
piled to byte code by a just-in-time (JIT) compiler. It gets loaded into
the kernel, which then executes this code in a dedicated virtual ma-
chine, explicitly handling only this code. Before this code is loaded
by the kernel, a pre-verifier checks the code to avoid malicious code
to be executed in kernel-space - i.e. it is checked, whether the pro-
gram contains out-of-bounds memory accesses, loops or
global variables. Loops require to be rolled out explicitly and global
variables require to be stored in memory maps, that are shared with
the respective user-space application.

In 2016, a patch set for high performance networking has been
added [8]. The so called eXpress data path (XDP) has been merged
in the Linux kernel in version 4.8. This new approach deals with net-
work packets taken right from the NIC, before the kernel is setting
up a socket buffer structure, and rejects unwanted, passes desired or
redirects packets. A good example for the power of XDP is the de-
fense of a denial-of-service attack. When such an attack is noticed it
is possible to drop the packets inside the NIC with such an eBPF pro-
gram. Thus, the CPU does not have to deal with them and the system
stays operational. To use this feature, however, a network driver has
to support XDP programs, which can then be accessed via the newly
introduced AF_XDP socket type - with specialized hardware, the of-
floading of eBPF programs to the hardware is possible. But even
without driver support for XDP programs, it can make sense to use
XDP in software mode, as shown in figure 1. Driver mode has been
described above. The software mode uses the network driver and al-
locates a socket buffer structure. For the given example XDP would
not make much sense. On the other hand it enables new ways of pre-
processing network packets, which can save a significant amount of
CPU time for other tasks.

2. CONCEPT

We investigate two different use cases: AVB Listener JACK Client
(jackd_listener) and JACK AVB Media Clock Listener Backend (avb-
mcl). Both use cases have the same bottle neck with different conse-
quences for the application.

The first use case is our proof of concept, since it involves all re-
quired functionalities: Integration into the build system, pre-
processing of AVTP packets and sharing data between kernel- and
user-space via memory maps, i.e. the audio samples. As build sys-
tem the Linux native make is used. Both the existing application and
the provided tutorials for XDP use the make build system [10]. The
pre-processing involves three steps. In the first step, AVTP pack-
ets shall be filtered on arrival for their destination MAC address and
stream ID. This step shall drop any packet that does not match the
criteria and prevents a lot of context switches to the host applica-
tions waiting raw Ethernet socket. The second step is to store the
audio samples contained in the AVTP packets in its integer represen-
tation to a memory map, that can be shared with the host application

Figure 1: Components of the XDP subsystem are shown in light blue
and reside in the device driver as well as the network stack [9].

in user-space. The final step is to pass the last AVTP packet, whose
contained samples are required to completely fill a sample buffer to
the host applications raw Ethernet socket. The raw Ethernet socket in
the host application jackd_listener is waiting, it receives only AVTP
packets for its own registered destination MAC address and stream
ID. In fact only the last received AVTP packet is passed. On the re-
ception of the last AVTP packet, it reads the integer-formated audio
samples from the memory map, converts them to float format and
writes them to a JACK ring buffer.

The second use case requires the integration of the XDP eBPF
build process into the Waf build system [11], since Waf is the build
system that is used to build JACK. The pre-processing involves two
steps, namely the first and the second step of the first use case - fil-
tering for destination MAC address and stream ID and passing only
the last AVTP packet of a sample buffer period.

3. REALIZATION

A prerequisite for XDP and eBPF to work is a kernel later than
version 4.8. We deployed a customized real-time kernel of version
5.2.17-rt9 in our test environment.

The implementation of an eBPF program with the host appli-

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

0 1000 2000 3000 4000 5000 6000

128 Samples
XDP

128 Samples
NO XDP

64 Samples
XDP

64 Samples
NO XDP

t [µsec]

Figure 2: Kernel traces showing the context switches of the JACK sound server for 64 and 128 samples per buffer with and without XDP.

cation jack_listener has been used as proof of concept. An inte-
gration in the make build system already existed, which only re-
quired adoption to the host application. The Waf build system that
is used for JACK, however, does not support the LLVM compiler
framework [12]. Furthermore, it had not been possible to integrate
the loading process of the eBPF program object file into the JACK
backend. Libbpf [13] needs to find the main symbol of the ap-
plication it is linked against, which could not be achieved until now.
Thus it is necessary to compile the eBPF program in a preparing
step and load it with a stand alone loader. If the make build sys-
tem is used directly, as is the case for the jackd_listener application,
the memory maps can be accessed by the host application via a file
descriptor and a name string.

The eBPF kernel programs need to be customized, configured
and compiled for each application that uses it. In which way param-
eters can be changed during runtime is still open for investigation.

After the eBPF program has been successfully hooked to the de-
sired NIC, the generic command ip link show ’dev’ can be
used to verify this, i.e. the last line of the following console output.

$ ip link show enp5s0

enp5s0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP>
mtu 1500 xdpgeneric qdisc mq state UP mode
DEFAULT group default qlen 1000

link/ether a0:36:9f:bd:95:46 brd ff:ff:ff:ff:ff:ff
prog/xdp id 217

Regarding our first described use case the current lack of finan-
cial and in turn hardware resources prevents the required implemen-
tations with corresponding complexity: Theoretically a significant
number of concurrent AVB listeners may be deployed on a single
server, however, in order to test it our test environment lacks a sig-
nificant amount of AVB talkers. A test would comprise the result-
ing streams to trigger the corresponding amount of interrupts by the
NIC, each of which would be pre-processed by the eBPF XDP pro-
gram that has been installed for that stream’s listener application.
Therefore, the evaluation of a setup, in which the jackd_listener ap-
plication benefits from XDP is not possible at the moment. In con-
trast our second described use case represents a solid base for the
technical implementation and evaluation as described in section 4.

4. EVALUATION AND DISCUSSION

The kernel network stack needs to keep working, although a filter is
implemented with XDP. This might sound obvious, but it is a devel-

opment experience worth noting. It is important for the XDP pro-
gram to pass all Ethernet frames up to the kernel network stack even
if they are not subject to our intentions. Filtering for a specific AVTP
stream for example, requires PTP and MRP to keep receiving pack-
ets, otherwise the NIC does support neither IEEE 802.1AS nor IEEE
802.1Qat. Thus, such packets need to be passed up to the kernel stack
and cannot be filtered, e.g. for debugging purposes. This becomes
even more important when multiple XDP programs are attached to
the same NIC. It has to be ensured that those XDP programs do not
interfere with each other by filtering packets the other XDP program
requires for its successful operations.

The runtime optimizations provided by the XDP eBPF are real-
ized with kernel traces. A comparison of the context-switch schedul-
ing events of the Linux kernel task scheduler is shown in figure 2.
It shows the JACK sound server process with the avb-mcl backend
configured at 64 and 128 samples per buffer, both with and without a
XDP filter program attached to the AVB NIC. The impact of the XDP
programs can be seen clearly. When a XDP program is attached to
the NIC, fewer context-switches take place, which provides more
CPU time to the JACK clients. The JACK clients context-switches
are represented by the spikes at the end of the JACK sound server
context-switches at the beginning of an audio cycle. Without XDP,
those spikes appear much earlier in the cycle and have less time to
complete, namely until the next JACK sound server context-switch
≈ 125 µsec later.

During situations with heavy load generated by the entire system
in a production scenario, the XDP improvements provide a much
more robust signal processing and audio signal routing. No buffer
over- or underruns occur. An in depth evaluation, however, does not
provide further insights and is therefore omitted.

5. CONCLUSIONS

Integration into the Waf build system used for JACK is not possible
at the moment, because Waf is not able to use the LLVM compiler
framework.

The lack of ability to perform floating point operations in the
kernel-space, is a limitation for further applications of XDP, i.e. for
the first discussed use case. Otherwise, it would be possible to di-
rectly write the float-formated audio samples to the JACK ring buffer
and eliminate any user-space interaction.

The JACK AVB audio stream listeners do not suffer from the
asynchronicity between the JACK sound server and the AVB media
clock, since multi threading and the JACK ring buffers decouple the

Proceedings of the 18th Linux Audio Conference (LAC-20), SCRIME, UniversitÃl’ de Bordeaux, France, November 25–27, 2020

two clock domains. In a scenario where a massive amount of lis-
teners is required, listener with XDP programs in place might be an
improvement to listeners without XDP. This is still open for investi-
gation.

For the JACK AVB media clock backend, XDP provides a signif-
icant improvement and solves the context-switching problems under
load. Further investigations, however, revealed that this performance
could as well be achieved with an appropriate handling of a generic
raw socket. Thus, XDP represents a powerful and interesting alter-
native butaspects such as tedious debugging, lack of floating-point
operations and the retrieval of hardware timestamps outweigh the
benefits significantly.

6. FUTURE WORK

The workflow to create eBPF programs has to be improved. The
name for each eBPF program, that shall be loaded, has to be unique
in order for the host program to correctly address the memory map
for the kernel-/user-space interactions. Furthermore, the parameters
required at runtime, such as the stream ID, destination MAC address
and sample buffer size, need to be passed to the eBPF program at
runtime. Only then can JACK change internal parameters without
the need for a newly compiled eBPF program.

At the moment, it is not possible to access hardware timestamps
inside an XDP program. This is on the road map of the development
teams, however, it might provide further optimization for an AVB
network stack in the future.

In theory, XDP would allow to use a NIC (AVB is not required
for this) with a raw Ethernet socket to implement a custom protocol.
This way it may be used as an interface for digital signal processors
that are equipped with an Ethernet interface as well. Signal routing
could be done with XDP, so that the signal processing computations
are offloaded to the digital signal processor. An user-space applica-
tion would only manage the audio streams. This approach will be
investigated in the future.

7. REFERENCES

[1] (2019, Feb. 8) Soundjack - a realtime communication solution.
[Online]. Available: http://http://www.soundjack.eu

[2] A. Carôt, U. Krämer, and G. Schuller, “Network music perfor-
mance (nmp) in narrow band networks,” in in Proceedings of
the 120th AES convention, Paris, France. Audio Engineering
Society, May 20–23, 2006.

[3] (2019, Feb. 8) Jack audio connection kit. [Online]. Available:
https://jackaudio.org

[4] C. Kuhr and A. Carôt, “A jack sound server backend to syn-
chronize to an ieee 1722 avtp media clock stream,” in Proceed-
ings of the Linux Audio Conference 2019. Stanford, CA USA:
Linuxaudio.org, Mar. 23–26, 2019.

[5] J. Corbet. (2014, Sep. 24) Linux weekly news (lwn.net):
The bpf system call api, version 14. [Online]. Available:
https://lwn.net/Articles/612878/

[6] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and
G. Carle, “Performance implications of packet filtering with
linux ebpf,” in 2018 30th International Teletraffic Congress
(ITC 30), vol. 01, Sep. 2018, pp. 209–217.

[7] (2019, Dec. 12) Bpf and xdp reference guide. [On-
line]. Available: https://cilium.readthedocs.io/en/latest/bpf/
#bpf-and-xdp-reference-guide

[8] J. Corbet. (2016, Apr. 4) Linux weekly news (lwn.net): Early
packet drop — and more — with bpf. [Online]. Available:
https://lwn.net/Articles/315941/

[9] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller,
“The express data path: Fast programmable packet pro-
cessing in the operating system kernel,” in Proceedings of
the 14th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: ACM, 2018, pp. 54–66. [Online]. Available:
http://doi.acm.org/10.1145/3281411.3281443

[10] (2019, Dec. 12) xdp-project - xdp-tutorial. [Online]. Available:
https://github.com/xdp-project/xdp-tutorial

[11] (2019, Dec. 31) Waf 2.0.18 - the meta build system. [Online].
Available: https://waf.io

[12] (2019, Dec. 31) Waf 2.0.18 documentation - waf tools -
compiler_c. [Online]. Available: https://waf.io/apidocs/tools/
compiler_c.html

[13] (2019, Dec. 12) libbpf. [Online]. Available: https://github.
com/libbpf/libbpf

http://http://www.soundjack.eu
https://jackaudio.org
https://lwn.net/Articles/612878/
https://cilium.readthedocs.io/en/latest/bpf/#bpf-and-xdp-reference-guide
https://cilium.readthedocs.io/en/latest/bpf/#bpf-and-xdp-reference-guide
https://lwn.net/Articles/315941/
http://doi.acm.org/10.1145/3281411.3281443
https://github.com/xdp-project/xdp-tutorial
https://waf.io
https://waf.io/apidocs/tools/compiler_c.html
https://waf.io/apidocs/tools/compiler_c.html
https://github.com/libbpf/libbpf
https://github.com/libbpf/libbpf

	1 Inroduction
	1.0.1 extended Berkley Packet Filters and eXpress Data Paths

	2 Concept
	3 Realization
	4 Evaluation and Discussion
	5 Conclusions
	6 Future Work
	7 References

