Proceedings of the 18 Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25-27, 2020

PD-FAUST MACKIE CONTROL

Albert Grif

IKM, Music-Informatics
Johannes Gutenberg University (JGU) Mainz, Germany
aggraef@gmail.com

ABSTRACT

The paper describes faust-mcp, a Pd abstraction which inter-
faces Faust to control surfaces utilizing the Mackie Control
Protocol (MCP). It builds on the author’s Pd-Faust software
which enables you to run dsp programs (such as synthesizers
and effects) written in Grame’s Faust programming language
inside Pd. The add-on can be used to control Faust dsps in Pd
using MCP-compatible controller hardware and software.

1. INTRODUCTION

Grame’s Faust is a functional programming language which
greatly facilitates the programming of audio processing and
instrument plugins [1]. Faust programs can be compiled to
native code for an abundance of different signal processing en-
vironments and plugin standards. Pd-Faust is a plugin which
allows Faust programs to run in Miller Puckette’s graphical
real-time patching software Pd!. It offers dynamic loading
(and reloading) of Faust modules, MIDI? and OSC3 control
and sequencing, as well as automatic GUI generation (in the
form of graph-on-parent subpatches), cf. [2].

Faust dsps typically offer a number of different controls
for various parameters, such as the cutoff frequency and reso-
nance of a filter, oscillator and envelope parameters of a syn-
thesizer, etc. These are represented in a Faust program by
means of so-called UI (user interface) elements, cf. [3]. While
Pd-Faust lets you generate Pd GUIs for all UI elements of a
Faust dsp in an automatic fashion, it is often desirable to con-
trol such parameters by means of some external, physical con-
trol surface instead. To these ends, Faust lets you map MIDI
messages to each Ul element by corresponding meta-data in
the UI element specifications. For instance:

res = hslider("res [midi:ctrl 20]", 3, 0, 20, 0.1);
cutoff = hslider("cutoff [midi:ctrl 21]",
6, 1, 20, 0.1);

The controller mappings are in the square brackets follow-
ing the control names. The midi:ctrl tag specifies the kind
of MIDI message to be received by the program, in this exam-
ple CC20 for the resonance and CC21 for the cutoff control, re-
spectively. These input values can then be used in the Faust
definition of the dsp as needed, e.g., for computing the re-
quired filter coefficients. UI elements for output (so-called bar-
graphs) are available as well, and all of these can be mapped
to different kinds of MIDI messages (pd-faust only supports
MIDI CC bindings at this time, however).

Ihttp://puredata.info/
Zhttp://midi.teragonaudio.com/
3h’ctp://opensoundcont rol.org/

So Faust dsps can already be controlled by plain old MIDI
controllers with a few knobs or faders quite easily, by just
adding a small amount of meta-data to the Faust program.
However, this method quickly becomes unwieldy when using
a lot of different Faust programs in the same patch, since most
MIDI fader boxes won't easily accommodate a large amount
of parameters, and remapping the controls is often a tedious
task. Thus some form of automatic mapping of the controls
is needed, and you also want to be able to quickly switch be-
tween different banks of controls.

As luck would have it, this kind of functionality is readily
provided by so-called DAW (digital audio workstation) con-
trollers, and there is an established MIDI-based protocol for
these, the Mackie Control Protocol (MCP). This is what faust-
mcp uses to interface pd-faust to compatible controllers. In
the paper, we give a quick introduction to MCP, discuss how
the faust-mcp package utilizes it, illustrate faust-mcp’s usage
with an example, and finally discuss some future work to fur-
ther improve the interface.

2. MACKIE CONTROL

DAW controllers were invented to ease the operation of digital
audio workstation (DAW) software [4]. They often resemble a
mixer control surface, which seems sensible because mixing is
a big part of what a DAW program does, and most musicians
and studio engineers will be well familiar with that kind of
interface.

Thus DAW controllers typically have a number of faders
and knobs used to input track parameters such as volume,
panning, sends, etc., along with buttons for playback control
and various other functions. On the output side, they may
also provide useful feedback through motor faders indicating
the current values, LED strips showing meter values in real-
time, a timecode display, and “scribble strips” (little LCD dis-
plays) to denote track and parameter information. The knobs
and faders are typically organized into banks of 8 which can
be switched at the push of a button to accommodate a large
number of different parameters (which is why you need the
scribble strips to figure out which tracks and parameters are
actually represented on the control surface at any one time).

The first DAW controller was produced by the mixer man-
ufacturer Mackie for Logic by emagic, and was subsequently
modified to support a number of other DAW programs, see
Fig. 1 [5]. The Mackie Control also set the de facto standard
MIDI protocol for this kind of gear, although there are some al-
ternatives, most notably the HUI protocol developed for Digi-
design’s Pro Tools.

Nowadays, DAW controllers can take many shapes and
forms, ranging from tiny gadgets just providing playback con-

http://www.musikinformatik.uni-mainz.de/
mailto:aggraef@gmail.com
http://puredata.info/
http://midi.teragonaudio.com/
http://opensoundcontrol.org/

Proceedings of the 18 Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25-27, 2020

Figure 1: Mackie Control [5].

trols, keyboard controllers with added knobs and faders, and
even foot controllers with switches and expression pedals, to
full-blown mixer-like control surfaces. Most of these speak the
Mackie Control Protocol (MCP), which is also supported by
most DAW programs these days. Some prominent examples
of these are the Mackie Control Universal, the Icon Platform
M, Behringer’s X-Touch series, as well as the Presonus Fader-
port controllers. There are also software implementations on
mobile platforms, such as humatic’s TouchDAW*, which em-
ulates a full Mackie-compatible DAW controller on Android
devices, and can be connected to PCs either via USB or LAN
(using RTP-MIDI or ipMIDI in the latter case); see Fig. 2.

MCP is in fact just a subset of MIDI, so it can be transmit-
ted over any kind of MIDI connection, but it uses MIDI in its
own, somewhat idiosyncratic way. Here is a brief summary of
the most important features relevant for our purpose:’

¢ The knobs are usually rotary encoders which transmit
relative changes in sign-bit encoding (thus, e.g., the CC
values 1 and 65 denote an incremental change by +1 and
-1, respectively). This includes pan (mapped to CC16
to CC23), and often there’s also a big jog wheel (CC60)
used to change the position of the playback cursor on
the timeline.

¢ The faders emit pitch bend messages on the first eight
MIDI channels (rather than MIDI CC) to take advantage
of the 14 bit resolution these messages provide.

¢ The buttons used to control playback and other func-
tions emit note messages such as note 94 and 93 for
transport control start and stop. Thus MCP always needs
a separate MIDI connection to the DAW where only MCP

4https://www.humatic.de/htools/touchdaw/

5 Although MCP is widely used, there doesn’t seem to be an offi-
cial specification of the protocol anywhere on the internet. However,
a fairly comprehensive overview of the protocol (albeit without the
feedback messages) can be found at http://www.jjlee.com/qlab/
MackieControlMIDIMap.pdf

SMPTE

NAME

ARM FLIP

S0L0 SOLO soLo 5010 0L SO0 GLOBAL

MUTE MUTE MUTE MUTE MUTE MUTE MUTE

EDIT EDIT EDIT EDIT EDIT EDIT EDIT

PLUGIN

MARKER NUDGE

REPLACE cuck

Figure 2: TouchDAW running on Android.

data is transmitted, lest you risk the knobs being pushed
triggering actual notes in some synthesizer plugin.

* MCP controllers also receive data to properly set the cur-
rent values of encoders and faders. In addition, on the
back connection, channel pressure (monophonic after-
touch) messages are employed to denote meter values,
MIDI CCs 66 to 73 represent the timecode display, and
sysex messages encode the contents of the scribble strips.

It is also worth noting here that while the encoders, faders,
and transport controls should work the same with any DAW,
the other (button) controls are much less standardized and
may vary a lot in function depending on the DAW program
that you use. Therefore many Mackie-compatible controllers
ship with overlays for popular DAWSs. Likewise, TouchDAW
lets you configure the target DAW and changes some of its
button layout and labeling accordingly.

3. THE FAUST-MCP PACKAGE

faust-mcp is distributed as open-source software on Github.®
The package contains a Pd abstraction mcp.pd, along with
some helper abstractions and externals, and a few examples.
To use it, you'll obviously need Pd to run the patches, an in-
stallation of Grame’s Faust compiler (and gcc) to compile your

®https://github.com/agraef/faust-mcp

https://www.humatic.de/htools/touchdaw/
http://www.jjlee.com/qlab/Mackie Control MIDI Map.pdf
http://www.jjlee.com/qlab/Mackie Control MIDI Map.pdf
https://github.com/agraef/faust-mcp

Proceedings of the 18 Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25-27, 2020

Faust programs, and an MCP-compatible controller. We have
tested the package with the Behringer X-Touch controllers (in-
cluding the X-Touch One and Mini), the Studiologic Mixface,
the Korg nanoKontrol2, and humatic’s TouchDAW, but any
MCP-compatible controller should work according to the ca-
pabilities it offers.

faust-mcp is built on top of pd-faust, and the accompa-
nying externals are written in the author’s Pure programming
language [6], so both pd-faust and pd-pure need to be installed
and enabled in Pd. Sources and binary packages for all of
these can be found on the Pure website, which also provides
detailed installation instructions.”

4. HOW IT WORKS

Basically, faust-mcp is a specialized MIDI mapper which trans-
lates MCP to standard MIDI control change (CC) messages
and vice versa. Apart from the requisite MIDI bindings in the
Faust programs, no manual setup is required; once the patch
has been loaded, the mcp.pd abstraction keeps track of all the
MIDI controls in all Faust dsps and configures itself accord-
ingly in a fully automatic fashion. Note that in the current
implementation, only controls with MIDI bindings will show
on the MCP surface.

The faders and encoders of the MCP device are linked to
the MIDI controls of your Faust dsps, so moving them changes
the controls of the dsp accordingly. Conversely, changing the
controls in the Pd GUI sets the controls of the device (if it sup-
ports feedback). In faust-mcp, the faders and encoders in each
strip can be used interchangeably (and will move in lockstep
if the device supports feedback), to accommodate any kind of
MCP device which has any faders or encoders at all. Passive
Faust controls (bargraph elements which output control val-
ues rather than reading them) are also supported and will be
displayed using the meter strips of the MCP device if it has
those (for instance, you can see these in the left and right
strips of the fx3 unit in Fig. 2).

The controls are organized into banks of eight faders and
encoders. The abstraction provides as many banks as needed
to represent all MIDI controls of all Faust dsps, ordering the
controls by increasing MIDI CC numbers. The usual bank and
channel controls on the MCP device can be used to switch be-
tween different banks as needed, so that all controls with MIDI
bindings become accessible.

Scribble strips are also supported (as can be seen at the top
of Fig. 2); they will show the name of the Faust units and con-
trols assigned to each fader and encoder, or display the corre-
sponding parameter values. Also, if you're using the included
midiosc.pd abstraction, the transport keys of the device can be
used to control playback. There are a number of other useful
features like these, which will be described in Section 6.

The faust-mcp package contains a few examples which can
be run straight from the source directory. The sources also in-
clude a small collection of sample Faust instruments and ef-
fects in the dsp subdirectory. Before running any of the ex-
amples, you'll have to compile these with the Faust compiler.

7See https://agraef.github.io/pure-1lang/. Binary packages
for Arch, Debian, and Ubuntu can be found on the Open Build Ser-
vice, please check the “Pure on Arch” and “Pure on Debian/Ubuntu”
wiki links on the website.

g synth2.pd - /home/ag/Sources/github/faust-mcp VoA X
File Edit View Put Media Windows Help

X]

“bwv772.mid" o [st OO [pe fx1 O0K|
S T I — [—
e Qavort Dlctear [Josc
o Dhrsee e Choos | | LT [—
I 1 7.4, f“m 1 Pos)] bz
[— — —
Faust~ subtractive synth %
T I b
e owrlg o] p— pe 12 0o
| TS — ——] — —
0o
i
P

left
5 7]
< faustdsp

Figure 3: Pd patch running faust-mcp.

A Makefile is included, so you can just type make in the dsp
folder to do this. The provided examples have all been set up
so that the MCP device is expected to be connected to Pd’s sec-
ond MIDI port, so you'll have to configure your Pd MIDI con-
nections accordingly. The included README file describes
this in more detail.

Of course, you can also use the abstraction in your own
patches. To do this, it’s enough to copy the mcp folder to the
directory containing your patch and Faust modules, or to any
folder on Pd’s library search path. To insert an instance of the
abstraction into your patch, create an object (Ctril+1) and type
mcp followed by the MIDI port number to which the MCP de-
vice is connected.® Then connect the abstraction’s single outlet
to whatever faust~ objects you wish to control, or just send it
to the faustdsp receiver which is read by all Faust modules
present in the patch. In either case, MIDI CC data emitted by
the abstraction is encoded in the author’s SMMF Pd message
format®, which is also the format used by pd-faust to encode
all MIDI messages.

For instance, mcp 2 connects to the device on Pd’s second
MIDI port. In principle any of Pd’s MIDI ports can be used
there (port 1 being the default). But as we already mentioned,
MCP uses note and control data in its own peculiar way, thus
you should make sure that live MIDI input to the Faust dsps
is kept separate from the MCP data.

5. EXAMPLE

Fig. 3 shows the synth2.pd example from the faust-mcp pack-
age; please also revisit Fig. 2 to see how the same patch looks
on the MCP device (TouchDAW in this case). In both figures
the third (and last) bank of controls is shown. This example il-
lustrates all the various elements: several faust~ objects along

8Note that only a single instance of the mcp patch is needed for any
running Pd instance, not one per toplevel patch!
9https ://bitbucket.org/agraef/pd- smmf

https://agraef.github.io/pure-lang/
https://bitbucket.org/agraef/pd-smmf

Proceedings of the 18 Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25-27, 2020

mep 2 U< U> Dvalue Ddspname Dencoder :.:
fx3 fx3 fx3 fx3 fx3 fx3
bass treble gain balance left right

L

s faustdsp

Figure 4: mcp abstraction closeup.

with their Pd GUISs, the midiosc abstraction which can be used
to play back a MIDI file and record automation data, and the
mcp abstraction itself. Note that faust-mcp ships with a special
version of the midiosc abstraction which has been modified so
that the MCP transport controls can be used with it.

Let’s have a closer look at the mcp abstraction in the exam-
ple (cf. Fig. 4). It shows a mirror of the scribble strips, as they
will render on the MCP device, as well as a few buttons and
toggles in the top row. All these functions are also available
using corresponding controls on the MCP device, as described
below; in the following list we give the equivalent MCP func-
tions in parentheses.

¢ The first two bang controls, labeled < and >, switch to
the previous and next bank of eight faders, respectively.
(MCP: bank left/right keys)

¢ The value toggle, when engaged, shows the current val-
ues of the controls in the top row of the scribble strips.
(MCP: touch a fader, or push an encoder)

* The dspname toggle switches the scribble strips between
showing the instance and the dsp name of the Faust
unit. (MCP: F1 key)

¢ The encoder toggle switches between two alternative
display styles (fan and pan) for the encoder LED rings.
Fan style (the default) shows an arc from 0 to the current
value, while pan style shows just a single tick between
min and max markers. (MCP: F2 key)

¢ The bang control on the right resets the internal state of
the abstraction and re-displays the scribble strips. (MCP:
F3 key)

Note that the controls in the abstraction are not meant to
replace a real MCP device; they merely provide you with the
most essential functions in case your MCP device lacks some
of these controls. Also, the facsimile of the scribble strips will
be helpful if your device has no display.

In the following section, we discuss the meaning of all
available MCP controls in some detail.

6. CONTROLS

The primary purpose of the mcp abstraction is to take con-
troller input from the mixer strips (faders and encoders) of
your device and map them to the corresponding MIDI con-
trol changes of the Faust units in your patch. It also does
the reverse translation, providing feedback to the MCP device
(moving motor faders or lighting up LEDs if your device has
any of those) if you change the Faust controls in the patch. In
addition, the abstraction offers various other useful functions,
mostly accessible through special keys on the MCP device:

¢ Bank changes: As already mentioned, the controls are
organized into banks of size eight (which matches the
number of strips on most MCP devices). The bank left
and right buttons can be used to switch between these,
so that all Faust controls become accessible. The chan-
nel left and right buttons, if available, move through the
controls one strip at a time; this is useful, in particular,
with single-strip devices like the X-Touch One.

e Scribble strips: Instance/dsp and control names are
shown in the scribble strips of the device (if available),
and touching the faders or pushing the encoders toggles
the value display in the top line of each scribble strip.

* Special dsp controls: Each Faust dsp has three special

controls, which correspond to the buttons in the upper
right corner of the generated Pd GUI (cf. Fig. 3): record
(a toggle which arms the unit for recording of OSC au-
tomation data when used with the midiosc abstraction),
reset (a bang control which resets all controls to their
initial values), and active (a toggle which turns the unit
on or off). With the mcp abstraction these are assigned
to the record, solo/select and mute buttons of the de-
vice, respectively. The rec and mute buttons also pro-
vide feedback, i.e., the buttons light up when the option
is engaged. In the case of mute this actually means that
the unit is deactivated, so the corresponding GUI toggle
is off. Pressing the select or solo button simply resets all
controls of the dsp to their initial values, without light-
ing any buttons.
Note that the special dsp controls always apply to the
dsp as a whole, so pressing the button on any strip cur-
rently assigned to a given dsp will change the mute or
record status of all the other buttons currently assigned
to the same dsp.

¢ Display options: The following options are assigned
to some of the function keys of the MCP device: F1
switches the scribble strips between instance and dsp
name of the Faust units; F2 switches the encoder style
between fan and pan, as discussed in the previous sec-
tion; and F3 tells the abstraction to update its internal
state and re-display the scribble strips (which can be
used to force an update of the display, e.g., after edit-
ing and reloading Faust units).

¢ Playback and transport: When used with the included
(modified) version of the pd-faust midiosc player, the
transport controls will work as follows: the rewind key
moves the playhead to the beginning of the MIDI file,
fast forward moves it to the end; stop stops, and play
toggles playback; record toggles the player’s OSC au-
tomation recording; cycle toggles the player’s loop func-
tion; and the big jog wheel and the cursor left/right
keys move the playhead in smaller and larger steps, re-
spectively. In addition, the function keys F4, F5 and F6
are assigned to some special OSC recording functions
(save: save the currently recorded automation data to a
text file; abort: delete the automation data of the cur-
rent take; and clear: delete the entire automation se-
quence). Please check the pd-faust documentation for

more details on how these operations are used.'”

Onhttps://agraef.github.io/pure-docs/pd- faust.html

https://agraef.github.io/pure-docs/pd-faust.html

Proceedings of the 18 Linux Audio Conference (LAC-20), SCRIME, Université de Bordeaux, France, Nov 25-27, 2020

¢ Timecode: When used with the midiosc player, the time-
code display shows the time (in h/m/s/tenths of sec-
onds) of the current playhead position.

Obviously, some of these functions may or may not be
available depending on the MCP device that you have. The
Mackie, Faderport 8 and X-Touch devices should enable all
features, but some lesser MCP devices may not offer transport
or function keys, push encoders, fader touch detection, scrib-
ble strips, or a timecode display.

Finally, let us mention in passing that even if your MIDI
controller does not have built-in MCP support, chances are
that if it has enough faders, knobs and buttons, you can make
it work as an MCP-compatible device using the author’s midi-
zap program [7]. For instance, faust-mcp works just fine with
the Akai APCmini, or even the Harley Benton MP-100 foot
controller, using the corresponding MCP emulations included
in the midizap distribution.

7. FUTURE WORK

While faust-mcp is perfectly usable already, we still consider
it work in progress. Here are some things we may want to
address in future versions:

* The most notable limitation right now is that faust-mcp
only covers dsp controls which already have MIDI bind-
ings. This simplifies the implementation a lot. How-
ever, another option would be to go through pd-faust’s
OSC layer instead. This would allow arbitrary controls
to be mapped, without having to configure MIDI bind-
ings beforehand.

¢ It would be nice to offer more layout options (i.e., how
“pages” for different Faust units are organized, and how
the controls are ordered).

¢ Currently controls mapped to the same MIDI CC in dif-
ferent Faust units will be mapped to the same MCP con-
trol. This is an outright bug and will hopefully be fixed
by the time you read this.

¢ faust-mcp is currently hard-wired to use 8-fader banks,
which is what most dedicated DAW controllers offer.
But there are devices with smaller and larger bank sizes
(as well as extender units which can be added to exist-
ing DAW controllers), so it makes sense to provide alter-
native versions of the mcp abstraction to accommodate
all common sizes.

e For DAW controllers without motorized faders, the cur-
rent fader positions will often be way off from the ac-
tual Faust control values, especially after bank switches.
The usual way to deal with this is a “pickup” (a.k.a.
“takeover”) mode which makes sure that controls start
moving only when the fader “picks up” the actual value.
Obviously, it would be nice to have this in faust-mcp as

well, at least as an option.11

1 As a remedy for the time being, if your controller doesn’t have
motor faders, then it may be safer to just use the encoders of your de-
vice instead, because these always emit changes relative to the current
control value.

¢ There should be some form of musical timecode dis-
play. Currently only physical time in h/m/s/tenths is
shown. This is due to limitations in the current pd-faust
implementation which doesn’t report musical time.

8. REFERENCES

[1] Yann Orlarey, Albert Gréf, and Stefan Kersten, “DSP pro-
gramming with Faust,” in Proceedings of the 4th Interna-
tional Linux Audio Conference, Karlsruhe, 2006, pp. 3947,
ZKM.

[2] Albert Grédf, “Pd-Faust: An integrated environment for
running Faust objects in Pd,” in Proceedings of the 10th
International Linux Audio Conference, Stanford University,
California, US, 2012, pp. 101-109, CCRMA.

[3] Yann Orlarey, Dominique Fober, and Stephane Letz, “Syn-
tactical and semantical aspects of Faust,” Soft Computing,
vol. 8, no. 9, pp. 623-632, 2004.

[4] Colby N. Leider, Digital Audio Workstation, McGraw-Hill,
Inc., New York, NY, USA, 2004.

[5] Mark Wherry, “Mackie control : DAW control surface,”
Sound On Sound, Dec. 2003, https://www.soundonsound.
com/reviews/mackie-control-universal. Last access:
Dec. 2019.

[6] Albert Grif, “Signal processing in the Pure programming
language,” in Proceedings of the 7th International Linux Au-
dio Conference, Parma, 2009, Casa della Musica.

[7] Albert Graf, “midizap: Controlling multimedia applica-
tions with MIDI,” in Proceedings of the 17th International
Linux Audio Conference, Stanford University, California,
US, 2019, pp. 113-120, CCRMA.

https://www.soundonsound.com/reviews/mackie-control-universal
https://www.soundonsound.com/reviews/mackie-control-universal

	1 Introduction
	2 Mackie Control
	3 The faust-mcp Package
	4 How it Works
	5 Example
	6 Controls
	7 Future Work
	8 References

